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Lecture 2: Cooperative Game Theory

Game theory

Non-cooperative game theory
No binding contracts can be
written
Players are individuals
Main solution concepts:

Nash equilibrium
Strong equilibrium

Cooperative game theory

Binding contract can be written

Players are individuals and
coalitions of individuals
Main solution concepts:

Core
Shapley value
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Lecture 2: Cooperative Game Theory

A noncooperative game (normal-form)

players: N = 1, 2, ..., n (finite)
actions / strategies: (each player chooses si from his own finite strategy
set; Si for each i ∈ N)

resulting strategy combination: s = (s1, ..., sn) ∈ (Si)i∈N

payoffs: ui = ui(s)
payoff outcome of the game
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Lecture 2: Cooperative Game Theory

Cooperative games and GAME theory
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Lecture 2: Cooperative Game Theory

Cooperative Game: MODEL ingredients

players: N = 1, 2, ..., n (finite)
coalitions: C ⊆ N form

resulting in a coalition structure ρ

NEED TO SPECIFY ...coalition formation and allocation of payoffs φ...
THEN RESULT

payoffs: ui = ui(ρ, φ)

payoff outcome of the game
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Lecture 2: Cooperative Game Theory

Characteristic function form (A MODEL by von
NEUMANN-MORGENSTERN 1944)

CFG defined by 2-tuple G(v,N)

players: N = 1, 2, ..., n (finite, fixed population)
coalitions: disjoint C ⊆ N form resulting in a coalition structure/
partition ρ

∅ is an empty coalition
N is the grand coalition
The set of all coalitions is 2N

ρ is the set of all partitions
v is the characteristic function form that assigns a worth v(C) to each
coalition and v(∅) = 0

v: 2N → R
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Lecture 2: Cooperative Game Theory

3-player example

v(i)=0

v(1,2)=v(1,3)=0.5

v(2,3)=0

v(N)=1
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Lecture 2: Cooperative Game Theory

Transferable-utility cooperative game

CFG defined by 2-tuple G(v,N)

Outcome: partition ρ = {C1,C2, ...,Ck} and payoff
allocation/imputation φ = {φ1, ..., φn}
in each C,

∑
i∈C φi ≤ v(C)− feasibility
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Lecture 2: Cooperative Game Theory

3-player example

Outcome 1: {(1,2),3} and {(0.25,0.25),0}

Outcome 2: {N} and {0.25,0.25,0.5}

Outcome 3: {N} and {0.8,0.1,0.1}
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Lecture 2: Cooperative Game Theory

Superadditivity assumption
If two coalitions C and S are disjoint (S ∩ C = ∅), then
v(C) + v(S) ≤ v(C ∪ S)
i.e. “mergers of coalitions weakly improve the worth of the coalitions”
This implies that, for all ρ ∈ P, v(N) ≥

∑
C∈ρ v(C)

i.e. “efficiency of the grand coalition”
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Lecture 2: Cooperative Game Theory

3-player example

v(N) > v(1, 2) = v(1, 3) > v(2, 3) = v(1) = v(2) = v(3)
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Lecture 2: Cooperative Game Theory

The core (Gillies 1959)

The core X of G(v,n) consists of all outcomes where the grand coalition
forms and payoff allocations are such that∑

i∈N φi = v(N) − Pareto-efficient

And, for all C ⊂ N,∑
i∈C φi ≥ v(C) − unblockable

individual rational: φi ≥ v(i) for all i
coalitional rational:

∑
i∈C φi ≥ v(C) for all C
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Lecture 2: Cooperative Game Theory

3-player example

Outcome 1: {(1,2),3} and {(0.25,0.25),0}

Outcome 2: {N} and {0.25,0.25,0.5}

Outcome 3: {N} and {0.8,0.1,0.1}
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Lecture 2: Cooperative Game Theory

Properties of the core

A system of weak linear inequalities define the core, which is therefore
closed and convex.

The core can be empty, non-empty, or large.
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Lecture 2: Cooperative Game Theory

Core empty

v(i) = 0

v(i, j) = 0.9

v(N) = 1
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Lecture 2: Cooperative Game Theory

Core unique

v(i) = 0

v(i, j) = 2/3

v(N) = 1
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Lecture 2: Cooperative Game Theory

Core large

v(i) = v(i, j) = 0

v(N) = 1
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Lecture 2: Cooperative Game Theory

ndareva-shapley theorem

The core of a game is nonempty if and only if the game is “balanced”
(Bondareva 1963,Shapley 1967)
Balancedness:
Balancing weight: Let α(C) ∈ [0, 1] be the balancing weight attached to
any C ∈ 2N

Balanced family: A set of balancing weights α is a balanced family if
for every i,

∑
C∈2N :i∈C α(C) = 1

Balancedness then requires that, for all balanced families,

v(N) ≥
∑

C∈2N α(C)v(C)
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Lecture 2: Cooperative Game Theory

Limitations of The core
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Lecture 2: Cooperative Game Theory

1. Core empty

v(i) = 0

v(i, j) = 5/6

v(N) = 1

20 / 41



Lecture 2: Cooperative Game Theory

2. Core non-empty but very inequitable (1, 0, 0)

v(i) = v(2, 3) = 0

v(N) = v(1, 2) = v(1, 3) = 1
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Lecture 2: Cooperative Game Theory

3. Core large (any split of 1)

v(i) = v(i, j) = 0

v(N) = 1

22 / 41



Lecture 2: Cooperative Game Theory

Shapley value: a Normative solution concept

Given some N, then for any v an acceptable allocation/value x*(v)
should satisfy

Efficiency.
∑

i∈N x ∗i (v) = v(N)

Symmetry. if, for any two players i and j, v(S ∪ i) = v(S ∪ j) for all S not
including i and j, then x ∗i (v) = x ∗j (v)

Dummy player. if, for any i, v(S ∪ i) = v(S) for all S not including i, then
x ∗i (v) = 0

Additivity. If u and v are two characteristic functions, then
x ∗ (v + u) = x ∗ (v) + x ∗ (u)
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Lecture 2: Cooperative Game Theory

Shapley value
The function

φi(v) =
∑

S∈N,i∈S
(|S|−1)!(n−|S|)!

n! [v(S)− v(S \ {i})]

is the unique function satisfying all four axioms for the set of all games.
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Lecture 2: Cooperative Game Theory

Alternative axioms

Young (1985) proved that a set of equivalent, more attractive axi-
oms is

Efficiency.
∑

i∈N x ∗i (v) = v(N)

Symmetry. if, for any two players i and j, v(S ∪ i) = v(S ∪ j) for
all S not including i and j, then x ∗i (v) = x ∗j (v)

Monotonicity. If u and v are two characteristic functions and, for
all S including i, u(S) ≥ v(S), then x ∗i (u) ≥ x ∗ (v)
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Lecture 2: Cooperative Game Theory

Interpretation
The Shapley Value is a player’s average marginal contribution:

For any S: i ∈ S,

MC(S) = v(S)− v(S \ i)
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Lecture 2: Cooperative Game Theory

1. Core empty

v(i) = 0

v(i, j) = 5/6

v(N) = 1

Shapley value

(1/3, 1/3, 1/3)
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Lecture 2: Cooperative Game Theory

2. Core non-empty but very inequitable (1, 0, 0)

v(i) = v(2, 3) = 0

v(N) = v(1, 2) = v(1, 3) = 1

Shapley value

(4/6, 1/6, 1/6)
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Lecture 2: Cooperative Game Theory

3. Core large (any split of 1)

v(i) = v(i, j) = 0

v(N) = 1

Shapley value

(1/3, 1/3, 1/3)
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Lecture 2: Cooperative Game Theory

Room-entering story

Roth (1983)
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Lecture 2: Cooperative Game Theory

Relationship Between core and shapley value
Put simply, none...

when the core is non-empty, the SV may lie inside the core or outside the
core

when the core is empty, the SV is still uniquely determined
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Lecture 2: Cooperative Game Theory

Other cooperative models
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Lecture 2: Cooperative Game Theory

nonTransferable-utility cooperative game

CFG defined by 2-tuple G(v,N)

Outcome: partition ρ = {C1,C2, ...,Ck} implies a payoff
allocation/imputation such that φi = fi(Ci)

“Agents have preferences over coalitions”. There are no side-payments
and the worth of the coalition cannot be distributed.
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Lecture 2: Cooperative Game Theory

Matching markets

34 / 41



Lecture 2: Cooperative Game Theory

Stable Marriage/Matching problem
A 2-sided market with n men on one side, and n women on the other.

Each man mi has individual preferences (e.g. w1 > w2 > ... > wn) over
the women

Each woman wi has individual preferences (e.g. mn > m1 > ... > wn−1)
over the men

We want to establish a stable matching of couples (man-woman) such that
there exists no alternative couple where both partners prefer to be matched
with each other rather than with their current partners.
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Lecture 2: Cooperative Game Theory

Deferred acceptance (Gale-shapley Theorem 1962)
For any marriage problem, one can make all matchings stable using deferred
acceptance. Use in practice (e.g. Roth & Sotomayor 1990, Roth et al. ...):

Resource allocations for hospitals

Organ transplantations

School admissions

Assigning users to servers in distributed Internet services

...
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Lecture 2: Cooperative Game Theory

deferred acceptance in pseudo-code

Initialize: all mi ∈ M and all wi ∈ W are single.
Engage: Each single man m “proposes” to his preferred woman w to
whom he has not yet proposed.

If w is single, she will become “engaged” with her preferred proposer.
Else w is already engaged with m′

If w prefers her preferred proposer m over m′, then (m,w) become engaged
and m′ becomes single
Else (m′,w) remain engaged.

All proposers who do not become engaged remain single.

If a single man exists, repeat Engage; Else move to terminate

Terminate: “Marry” all engagements.
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Lecture 2: Cooperative Game Theory

Proof sketch

Women “trade up” until everyone is engaged, which is when they all get
married.
No singles can remain, because every man would eventually propose to
every woman as long as he remains single, and once proposed to, a
single woman becomes engaged.
The resulting matching is stable!
Proof: Suppose the algorithm terminates so that there exists a pair (m,w)
whose partners are engaged to w′ and m′ respectively, but not to each
other. It is not possible for both m and w to prefer each other over their
engaged partner, because

If m prefers w over w′, then he proposed to w before he proposed to w′. At
that time,

If w got engaged with m, but did not marry him, then w must have traded up
and left m for someone she prefers, and therefore cannot prefer m over m′.
Else, if w did not get engaged with m, then she was already with someone
she prefers to m, and can therefore not prefer m over m′.

Hence, either m prefers w′ over w, or w prefers m′ over m.
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Lecture 2: Cooperative Game Theory

What went wrong in the great gatsby
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Lecture 2: Cooperative Game Theory

The assignment game
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Lecture 2: Cooperative Game Theory

See you next week
THANKS EVERYBODY
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