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Lecture 2: Cooperative Game Theory

What you did last week...

There appear to be traces of more strategic behavior (more mass nearer to 0) 
when you played the game the second time.
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Lecture 2: Cooperative Game Theory

And here is what the 2017 ETH class did:

similar... but notice the many 100s (recall the different rules)...
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Lecture 2: Cooperative Game Theory

The two branches of game theory

Non-cooperative game theory

No binding contracts can be
written

Players are individuals

Nash equilibrium

Cooperative game theory

Binding contract can be written

Players are individuals and
coalitions of individuals
Main solution concepts:

Core
Shapley value

The focus of today!
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Lecture 2: Cooperative Game Theory

Reminder: the ingredients of a noncooperative game

Players: N = {1, 2, ..., n}
Actions / strategies: each player chooses si from his own finite strategy
set; Si for each i ∈ N

Outcome: resulting strategy combination: s = (s1, ..., sn) ∈ (Si)i∈N

Payoff outcome: payoffs ui = ui(s)
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Lecture 2: Cooperative Game Theory

The Theory of Games and Economic Behavior (1944)

John von Neumann (1903-1957) and Oskar Morgenstern (1902-1977)
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Lecture 2: Cooperative Game Theory

The ingredients of a cooperative game

Population of players: N = {1, 2, ..., n} (finite)
Coalitions: C ⊆ N form in the population and become players

resulting in a coalition structure ρ = {C1,C2, ...,Ck}
Payoffs: –we still need to specify how– payoffs φ = {φ1, ..., φn} come
about:

something like this: φi = φ(ρ,“sharing rule”)
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Lecture 2: Cooperative Game Theory

Cooperative games in characteristic function form (CFG)

The game: A CFG defined by 2-tuple G(v,N)

Players: N = 1, 2, ..., n (finite, fixed population)
Coalitions: disjoint C ⊆ N form resulting in a coalition structure/
partition ρ

∅ is an empty coalition
N is the grand coalition
The set of all coalitions is 2N

ρ is the set of all partitions
Characteristic function: v is the characteristic function form that
assigns a worth v(C) to each coalition

v: 2N → R
(and v(∅) = 0)
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Lecture 2: Cooperative Game Theory

3-player example

N=1,2,3

v(i)=0

v(1,2)=v(1,3)=0.5

v(2,3)=0

v(N)=1
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Lecture 2: Cooperative Game Theory

“Transferable utility” and feasibility

The game: CFG defined by 2-tuple G(v,N)

Outcome: Coalition structure
partition ρ = {C1,C2, ...,Ck} and
payoff allocation/imputation φ = {φ1, ..., φn}

Importantly, v(C) can be “shared” amongst i ∈ C (transfer of utils)!

Feasibility: in each C,
∑

i∈C φi ≤ v(C)
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Lecture 2: Cooperative Game Theory

3-player example: some feasible outcomes

Outcome 1: {(1,2),3} and {(0.25,0.25),0}

Outcome 2: {N} and {0.25,0.25,0.5}

Outcome 3: {N} and {0.8,0.1,0.1}
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Lecture 2: Cooperative Game Theory

Superadditivity assumption

Superadditivity

If two coalitions C and S are disjoint (i.e. S∩C = ∅), then v(C)+v(S) ≤
v(C ∪ S)

i.e. “mergers of coalitions weakly improve their worths”

Superadditivity implies efficiency of the grand coalition: for all ρ ∈ ρ,
v(N) ≥

∑
C∈ρ v(C).

In our example:
v(N) > v(1, 2) = v(1, 3) > v(2, 3) = v(1) = v(2) = v(3).
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Lecture 2: Cooperative Game Theory

The Core (Gillies 1959)

The Core

The Core of a superadditive G(v, n) consists of all outcomes where the
grand coalition forms and payoff allocations φ∗ are

Pareto-efficient:
∑

i∈N φ
∗
i = v(N)

Unblockable: for all C ⊂ N,
∑

i∈C φ
∗
i ≥ v(C)

individual rational: φ∗i ≥ v(i) for all i
coalitional rational:

∑
i∈C φ

∗
i ≥ v(C) for all C
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Lecture 2: Cooperative Game Theory

3-player example

Outcome 1: {(1,2),3} and {(0.25,0.25),0}

Outcome 2: {N} and {0.25,0.25,0.5}

Outcome 3: {N} and {0.8,0.1,0.1}
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Lecture 2: Cooperative Game Theory

Properties of the Core

A system of weak linear inequalities defines the Core, which is therefore
closed and convex.
The core can be

empty
non-empty
large
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Lecture 2: Cooperative Game Theory

Core empty

v(i) = 0

v(i, j) = 0.9

v(N) = 1
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Lecture 2: Cooperative Game Theory

Core unique

v(i) = 0

v(i, j) = 2/3

v(N) = 1
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Lecture 2: Cooperative Game Theory

Core large

v(i) = v(i, j) = 0

v(N) = 1
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Lecture 2: Cooperative Game Theory

Bondareva-Shapley Theorem

Bondareva 1963 and Shapley 1967

The Core of a cooperative game is nonempty if and only if the game is
balanced.

Balancedness:
Balancing weight: Let α(C) ∈ [0, 1] be the balancing weight attached to
any C ∈ 2N

Balanced family: A set of balancing weights α is a balanced family if,
for every i,

∑
C∈2N :i∈C α(C) = 1

Balancedness in a superadditive game then requires that, for all balanced
families,

v(N) ≥
∑

C∈2N α(C)v(C)
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Lecture 2: Cooperative Game Theory

Limitations of the Core
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Lecture 2: Cooperative Game Theory

1. Core empty

v(i) = 0

v(i, j) = 5/6

v(N) = 1
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Lecture 2: Cooperative Game Theory

2. Core non-empty but very inequitable (1, 0, 0)

v(i) = v(2, 3) = 0

v(N) = v(1, 2) = v(1, 3) = 1
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Lecture 2: Cooperative Game Theory

3. Core large (any split of 1)

v(i) = v(i, j) = 0

v(N) = 1
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Lecture 2: Cooperative Game Theory

So is the Core a descriptive or a prescriptive/normative solution concept?
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Lecture 2: Cooperative Game Theory

What about an explicitly normative solution concept?
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Lecture 2: Cooperative Game Theory

Lloyd Shapley (1923-2016)
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Lecture 2: Cooperative Game Theory

Shapley value (Shapley 1953)

Axioms. Given some G(v,N), an acceptable allocation/value x∗(v) should
satisfy

Efficiency.
∑

i∈N x∗i (v) = v(N)

Symmetry. if, for any two players i and j, v(S ∪ i) = v(S ∪ j) for all S
not including i and j, then x∗i (v) = x∗j (v)

Dummy player. if, for any i, v(S ∪ i) = v(S) for all S not including i,
then x∗i (v) = 0

Additivity. If u and v are two characteristic functions, then
x∗(v + u) = x∗(v) + x∗(u)
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Lecture 2: Cooperative Game Theory

Shapley’s characterization

The unique function satisfying all four axioms for the set of all games is

φi(v) =
∑

S∈N,i∈S
(|S|−1)!(n−|S|)!

n! [v(S)− v(S \ {i})]

So what does this function mean?
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Lecture 2: Cooperative Game Theory

Shapley value

The Shapley value pays each player his average marginal contributions:

For any S: i ∈ S, think of the marginal contribution
MCi(S) = v(S)− v(S \ i).

And of
∑

S∈N,i∈S
(|S|−1)!(n−|S|)!

n! as some kind of “average” operator
(more detail later).

Then,

φi(v) =average (MCi(S))
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Lecture 2: Cooperative Game Theory

An alternative characterization

Young (1985): a set of equivalent axioms is

Efficiency.
∑

i∈N x∗i (v) = v(N)

Symmetry. if, for any two players i and j, v(S ∪ i) = v(S ∪ j) for
all S not including i and j, then x∗i (v) = x∗j (v)

Monotonicity. If u and v are two characteristic functions and, for
all S including i, u(S) ≥ v(S), then x∗i (u) ≥ x∗(v)

A more attractive set of axioms...
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Lecture 2: Cooperative Game Theory

1. Core empty

v(i) = 0

v(i, j) = 5/6

v(N) = 1

Shapley value

(1/3, 1/3, 1/3)

31 / 54



Lecture 2: Cooperative Game Theory

2. Core non-empty but very inequitable (1, 0, 0)

v(i) = v(2, 3) = 0

v(N) = v(1, 2) = v(1, 3) = 1

Shapley value

(4/6, 1/6, 1/6)
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Lecture 2: Cooperative Game Theory

3. Core large (any split of 1)

v(i) = v(i, j) = 0

v(N) = 1

Shapley value

(1/3, 1/3, 1/3)
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Lecture 2: Cooperative Game Theory

Room-entering story (Roth 1983)

Average MC in this sense...

N = {1, 2, ..., n} players enter a room in some order.

Whenever a player enters a room, and players S \ i are already
there, he is paid his marginal contribution
MCi(S) = v(S)− v(S \ i).

Suppose all n! orders are equally likely.

Then there are (s− 1)! different orders in which these players in
S \ i can precede i

and (n− s)! order in which the others may follow

hence, a total of (s− 1)!(n− s)! orders for that case of the n! total
orders.

Ex ante, the payoff of a players is
∑

S∈N,i∈S
(s−1)!(n−s)!

n! MCi(S) –
the Shapley value.
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Lecture 2: Cooperative Game Theory

Relationship between the Core and the Shapley value

Put simply, none...

the Shapley value is normative

the Core is something else (hybrid)

when the Core is non-empty, the SV may lie inside or not

when the Core is empty, the SV is still uniquely determined
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Lecture 2: Cooperative Game Theory

Other cooperative models
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Lecture 2: Cooperative Game Theory

Non-transferable-utility cooperative game

As before: CFG defined by 2-tuple G(v,N)

Outcome: partition ρ = {C1,C2, ...,Ck} directly (w/o negotiating how
to share) implies a payoff allocation/imputation – φi = fi(Ci)

There are no side-payments and the worth of a coalition cannot be
(re-)distributed.

Agents have preferences over coalitions.
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Lecture 2: Cooperative Game Theory

Stable Marriage/Matching problem
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Lecture 2: Cooperative Game Theory

Stable Marriage/Matching problem

2-sided market
Men M = {m1, ...,mn} on one side, women W = {w1, ...,wn} on the
other.

Each mi: preferences (e.g. w1 � w2 � ... � wn) over women

Each wi: preferences (e.g. mn � m1 � ... � mn−1) over men

We want to establish a stable matching: forming couples (man-woman) such
that there exists no alternative couple where both partners prefer to be
matched with each other rather than with their current partners.
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Lecture 2: Cooperative Game Theory

Deferred acceptance

Gale-Shapley 1962

For any marriage problem, one can make all matchings stable using the
deferred acceptance algorithm.

Widely used in practice (e.g. Roth & Sotomayor 1990, Roth et al. ...):
Resource allocations/doctor recruitment for hospitals
Organ transplantations
School admissions/room allocation
Assigning users to servers in distributed Internet services
...
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Lecture 2: Cooperative Game Theory

DA “pseudo-code”

Initialize : all mi ∈ M and all wi ∈ W are single.
Engage : Each single man m ∈ M proposes to his preferred woman w to

whom he has not yet proposed.
If w is single, she will become engaged with her preferred
proposer.
Else w is already engaged with m′.

If w prefers her preferred proposer m over her current
engagement m′, then (m,w) become engaged and m′

becomes single.
Else (m′,w) remain engaged.

All proposers who do not become engaged remain single.
Repeat : If there exists a single man after Engage, repeat Engage; Else

move to Terminate.
Terminate : Marry all engagements.
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Lecture 2: Cooperative Game Theory

Proof sketch

Trade up : Women can trade up until every woman (hence also every
man) is engaged, which is when they all get married.

Termination : No singles can remain, because every man would eventually
propose to every woman as long as he remains single, and every
single woman, once proposed to, becomes engaged.

Termination with stability?
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Lecture 2: Cooperative Game Theory

Proof sketch

Stability : The resulting matching is stable.
Proof : Suppose the algorithm terminates so that there exists a pair

(m,w) whose partners are engaged to w′ 6= w and m′ 6= m
respectively.

Claim : It is not possible for both m and w to prefer each other over
their engaged partner. because

If m prefers w over w′, then he proposed to w before he
proposed to w′. At that time,

Case 1: If w got engaged with m, but did not marry him,
then w must have traded up and left m for someone she
prefers over m, and therefore cannot prefer m over m′.
Case 2: Else, if w did not get engaged with m, then she
was already with someone she prefers to m at that time,
and can therefore not prefer m over m′.

Hence, either m prefers w′ over w, or w prefers m′ over m.
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Lecture 2: Cooperative Game Theory

Back to the Great Gatsby
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Matching markets

From NTU to TU matching

Non-transferable utility

Pairwise stable outcomes always exist
(Gale & Shapley 1962)

Transferable utility

Pairwise stable and optimal outcomes
(core) always exist (Shapley & Shubik

1972)

1f 2f

1w 2w 3w

1 2 3( )> >w w w 3 2 1( )> >w w w

2 1( )>f f 1 2( )∼f f 1 2( )>f f

1f 2f

1w 2w 3w

(76,62,40) (40,62,80)

(40,60) (40,40) (60,40)
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TU model: the “Assignment Game” (Shapley & Shubik 1972)

Firms/workers and their willingness to pay/accept

Firms i ∈ F and workers j ∈ W look for
partners (|F| = |W| = N)

Firm i is willing to pay at most
r+i (j)∈ δN to match worker j

Worker j is willing to accept at least
r−j (i)∈ δN to match firm i

δ> 0 is the minimum unit (‘dollars’)

0

( )−

j
r i

( )+

i
r j

δ�

46 / 54



TU model: the “Assignment Game” (Shapley & Shubik 1972)

The resulting match values α

The match value for the pair (i, j) is

αij = (r+i (j)− r−j (i))+

Define matrix α = (αij)i∈F,j∈W

0

( )−

j
r i

( )+

i
r j

ij
α

δ�
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TU model: the “Assignment Game” (Shapley & Shubik 1972)

Match values and the assignment matrix define the game

Let A = (aij)i∈F,j∈W be the assignment such
that each agent has at most one partner and

if (i, j) is

{
matched then aij = 1
unmatched then aij = 0
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TU model: the “Assignment Game” (Shapley & Shubik 1972)

Prices and payoffs

Price. Any price πij between the willingnesses to “buy” and “sell” of firm and
worker is individual rational:

r+i (j) ≥ πij ≥ r−j (i)

Payoff. Given prices, payoffs are

The payoff to firm i is φi= r+i (j)− πij

The payoff to worker j is φj= πij − r−j (i)

If an agent i (no matter whether firm or worker) is single φi= 0.

Assignment A and payoffs φ define an outcome of the game.
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TU model: the “Assignment Game” (Shapley & Shubik 1972)

Solution concepts

Optimality. A is optimal if it maximizes total payoff:∑
(i,j)∈F×W aij · αij

Pairwise stability. φ is pairwise stable if for all (i, j) matched
φi + φj = αij

and for all k, l not matched
φk + φl ≥ αkl

Core. The Core of an assignment game consists of all outcomes, [A,φ], such
that A is an optimal assignment and φ is pairwise stable.

Shapley-Shubik 1972

The Core of the assignment game is nonempty.
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Example

Example

Shapley-Shubik’s house-trading game:

House Sellers willingness to accept Buyers’ willingness to pay
q+1j = q+2j = q+3j p+i1 p+i2 p+i3

1 18, 000 23, 000 26, 000 20, 000
2 15, 000 22, 000 24, 000 21, 000
3 19, 000 21, 000 22, 000 17, 000

These prices lead to the following match values, αij (units of 1000), where
sellers are occupying rows and buyers columns:

α =

 5 8 2
7 9 6
2 3 0


Unique optimal matching is shown in bold numbers.
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Example

Figure: Core imputation space for the sellers.
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Example

How to “implement” a core outcome?

Centralized market: Algorithm by central planner yields stable and optimal
outcomes, e.g.,

deferred acceptance (Gale & Shapley 1962) for the NTU game

solving a LP-dual (Shapley & Shubik 1972) for the TU game

used in practice: hospital matching, transplantations, school admissions,
internet servers, communication networks, etc.

Decentralized market: Players trade and (re-)match repeatedly over time.

random blocking paths (Roth & Vande Vate 1990) converge to the NTU core

random (re-)trade and price adjustment (Nax & Pradelski 2015) converge to the

TU core

used in practice: “free” markets, internet auctions, labor market, etc.
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Example

THANKS EVERYBODY
Keep checking the website for new materials as we progress: 
http://gametheory.online
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