NORMAL FORM GAMES:
 Strategies, dominance, and Nash

Heinrich H Nax
\& Heiko Rauhut
hnax@ethz.ch

March 3, 2020: Lecture 3

Plan

- Introduction normal form games
- Dominance in pure strategies
- Nash equilibrium in pure strategies
- Best replies
- Dominance, Nash, best replies in mixed strategies - Nash's theorem and proof via Brouwer

Plan

- Introduction normal form games
- Dominance in pure strategies
- Nash equilibrium in pure strategies
- Best replies
- Dominance, Nash, best replies in mixed strategies
- Nash's theorem and proof via Brouwer

The Prisoner's Dilemma

"Two suspects are arrested and interviewed separately. If they both keep quiet (i.e., cooperate) they go to prison for one year. If one suspect supplies evidence (defects) then that one is freed, and the other one is imprisoned for eight years. If both defect then they are imprisoned for five years."

The Prisoner's Dilemma

"Two suspects are arrested and interviewed separately. If they both keep quiet (i.e., cooperate) they go to prison for one year. If one suspect supplies evidence (defects) then that one is freed, and the other one is imprisoned for eight years. If both defect then they are imprisoned for five years."

Players The players are the two suspects $N=\{1,2\}$.

Payoffs For example, $u_{1}(C, D)=-8$ and $u_{2}(C, D)=0$. All
payoffs are represented in this matrix:

The Prisoner's Dilemma

"Two suspects are arrested and interviewed separately. If they both keep quiet (i.e., cooperate) they go to prison for one year. If one suspect supplies evidence (defects) then that one is freed, and the other one is imprisoned for eight years. If both defect then they are imprisoned for five years."

Players The players are the two suspects $N=\{1,2\}$. Strategies The strategy set for player 1 us $S_{1}=\{C, D\}$, and for player 2 is $S_{2}=\{C, D\}$.

The Prisoner's Dilemma

"Two suspects are arrested and interviewed separately. If they both keep quiet (i.e., cooperate) they go to prison for one year. If one suspect supplies evidence (defects) then that one is freed, and the other one is imprisoned for eight years. If both defect then they are imprisoned for five years."

Players The players are the two suspects $N=\{1,2\}$. Strategies The strategy set for player 1 us $S_{1}=\{C, D\}$, and for player 2 is $S_{2}=\{C, D\}$.
Payoffs For example, $u_{1}(C, D)=-8$ and $u_{2}(C, D)=0$. All payoffs are represented in this matrix:

	Cooperate	Defect
Cooperate	$-1,-1$	$-8, \quad 0$
Defect	$0,-8$	$-5,-5$

Definition: Normal form game

A normal form (or strategic form) game consists of three object:
(1) Players: $N=\{1, \ldots, n\}$, with typical player $i \in N$.
(2) Strategies: For every player i, a finite set of strategies, S_{i}, with typical strategy $s_{i} \in S_{i}$.
(3) Payoffs: A function $u_{i}:\left(s_{1}, \ldots, s_{n}\right) \rightarrow \mathbb{R}$ mapping strategy profiles to a payoff for each player i. $u: S \rightarrow \mathbb{R}^{n}$.

Thus a normal form game is represented by the triplet:

$$
G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle
$$

Strategies

Definition: strategy profile

$s=\left(s_{1}, \ldots, s_{n}\right)$ is called a strategy profile.
It is a collection of strategies, one for each player. If s is played, player i receives $u_{i}(s)$.

Definition: opponents strategies

Write s_{-i} for all strategies except for the one of player i. So a strategy profile may be written as $s=\left(s_{i}, s_{-i}\right)$.

Strategies

Definition: strategy profile

$s=\left(s_{1}, \ldots, s_{n}\right)$ is called a strategy profile.
It is a collection of strategies, one for each player. If s is played, player i receives $u_{i}(s)$.

Definition: opponents strategies

Write s_{-i} for all strategies except for the one of player i. So a strategy profile may be written as $s=\left(s_{i}, s_{-i}\right)$.

Dominance

A strategy strictly dominates another if it is always better whatever others do.
Strict Dominance A strategy s_{i} strictly dominates s_{i}^{\prime} if $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all s_{-i}.

Dominance

A strategy strictly dominates another if it is always better whatever others do.
Strict Dominance A strategy s_{i} strictly dominates s_{i}^{\prime} if $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all s_{-i}.

	Cooperate	Defect
Cooperate	$-1,-1$	$-8, \quad 0$
Defect	$0,-8$	$-5,-5$

Dominance

A strategy strictly dominates another if it is always better whatever others do.
Strict Dominance A strategy s_{i} strictly dominates s_{i}^{\prime} if $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all s_{-i}.

	Coopdrate	Defect
Cooperate	$-1,-1$	$-8, \quad 0$
Defect	$0,-8$	$-5,-5$

Dominance

A strategy strictly dominates another if it is always better whatever others do.
Strict Dominance A strategy s_{i} strictly dominates s_{i}^{\prime} if

$$
u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \text { for all } s_{-i}
$$

Dominance

A strategy strictly dominates another if it is always better whatever others do.

> Strict Dominance A strategy s_{i} strictly dominates s_{i}^{\prime} if $$
u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \text { for all } s_{-i} .
$$

Dominated Strategy A strategy s_{i}^{\prime} is strictly dominated if there is an s_{i}
that strictly dominates it.
Dominant Strategy A strategy s_{i} is strictly dominant if it strictly dominates all $s_{i}^{\prime} \neq s_{i}$.

If players are rational they should never play a strictly dominated strategy, no matter what others are doing, they may play weakly dominated strategies:

WEAK DOMINANCE A strategy s_{i} weakly dominates s_{i}^{\prime} if $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all s_{-i}.

Dominance

A strategy strictly dominates another if it is always better whatever others do.
Strict Dominance A strategy s_{i} strictly dominates s_{i}^{\prime} if $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all s_{-i}.
Dominated Strategy A strategy s_{i}^{\prime} is strictly dominated if there is an s_{i} that strictly dominates it.

If players are rational they should never play a strictly dominated strategy, no matter what others are doing, they may play weakly dominated strategies:

Weak Dominance A strategy s_{i} weakly dominates s_{i}^{\prime} if $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all s_{-i}.

Dominance

A strategy strictly dominates another if it is always better whatever others do.
Strict Dominance A strategy s_{i} strictly dominates s_{i}^{\prime} if $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all s_{-i}.
Dominated Strategy A strategy s_{i}^{\prime} is strictly dominated if there is an s_{i}
that strictly dominates it.
Dominant Strategy A strategy s_{i} is strictly dominant if it strictly dominates all $s_{i}^{\prime} \neq s_{i}$.

If players are rational they should never play a strictly dominated strategy, no matter what others are doing, they may play weakly dominated strategies:

Weak Dominance A strategy s_{i} weakly dominates s_{i}^{\prime} if $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all s_{-i}.

Dominance

A strategy strictly dominates another if it is always better whatever others do.
Strict Dominance A strategy s_{i} strictly dominates s_{i}^{\prime} if $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all s_{-i}.
Dominated Strategy A strategy s_{i}^{\prime} is strictly dominated if there is an s_{i} that strictly dominates it.
Dominant Strategy A strategy s_{i} is strictly dominant if it strictly dominates all $s_{i}^{\prime} \neq s_{i}$.

If players are rational they should never play a strictly dominated strategy, no matter what others are doing, they may play weakly dominated strategies:

Weak Dominance A strategy s_{i} weakly dominates s_{i}^{\prime} if

Dominance

A strategy strictly dominates another if it is always better whatever others do.
Strict Dominance A strategy s_{i} strictly dominates s_{i}^{\prime} if $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all s_{-i}.
Dominated Strategy A strategy s_{i}^{\prime} is strictly dominated if there is an s_{i} that strictly dominates it.
Dominant Strategy A strategy s_{i} is strictly dominant if it strictly dominates all $s_{i}^{\prime} \neq s_{i}$.

If players are rational they should never play a strictly dominated strategy, no matter what others are doing, they may play weakly dominated strategies:

Weak Dominance A strategy s_{i} weakly dominates s_{i}^{\prime} if $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all s_{-i}.

Dominant-Strategy Equilibrium

Definition: Dominant-Strategy Equilibrium

The strategy profile s^{*} is a dominant-strategy equilibrium if, for every player $i, u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)$ for all strategy profiles $s=\left(s_{i}, s_{-i}\right)$.

Example: Prisoner's dilemma

(D, D) is the (unique) dominant-strategy equilibrium.

Dominant-Strategy Equilibrium

Definition: Dominant-Strategy Equilibrium

The strategy profile s^{*} is a dominant-strategy equilibrium if, for every player $i, u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)$ for all strategy profiles $s=\left(s_{i}, s_{-i}\right)$.

Example: Prisoner's dilemma

	Cooperate	Defect
Cooperate	$-1,-1$	$-8, \quad 0$
Defect	$0,-8$	$-5,-5$

(D, D) is the (unique) dominant-strategy equilibrium.

Dominant-Strategy Equilibrium

Definition: Dominant-Strategy Equilibrium

The strategy profile s^{*} is a dominant-strategy equilibrium if, for every player $i, u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)$ for all strategy profiles $s=\left(s_{i}, s_{-i}\right)$.

Example: Prisoner's dilemma

	Cooperate	Defect
Cooperate	$-1,-1$	$-8, \quad 0$
Defect	$0,-8$	$-5,-5$

(D, D) is the (unique) dominant-strategy equilibrium.

Common knowledge of rationality and the game

Suppose that players are rational decision makers and that mutual rationality is common knowledge, that is:

- I know that she knows that I will play rational
- She knows that "I know that she knows that I will play rational"
- I know that "She knows that "I know that she knows that I will play rational""

Further suppose that all players know the game and that again is common knowledge.

Iterative deletion of strictly dominated strategies

If the game and rationality of players are common knowledge, iterative deletion of strictly dominated strategies yields the set of "rational" outcomes.

Iterative deletion of strictly dominated strategies

If the game and rationality of players are common knowledge, iterative deletion of strictly dominated strategies yields the set of "rational" outcomes.

Iterative deletion of strictly dominated strategies

If the game and rationality of players are common knowledge, iterative deletion of strictly dominated strategies yields the set of "rational" outcomes.

Iterative deletion of strictly dominated strategies

If the game and rationality of players are common knowledge, iterative deletion of strictly dominated strategies yields the set of "rational" outcomes.

Iterative deletion of strictly dominated strategies

If the game and rationality of players are common knowledge, iterative deletion of strictly dominated strategies yields the set of "rational" outcomes.

Iterative deletion of strictly dominated strategies

If the game and rationality of players are common knowledge, iterative deletion of strictly dominated strategies yields the set of "rational" outcomes.

Iterative deletion of strictly dominated strategies

If the game and rationality of players are common knowledge, iterative deletion of strictly dominated strategies yields the set of "rational" outcomes.

Note: Iteratively deletion of strictly dominated strategies is independent of the order of deletion.

Battle of the Sexes

$$
\begin{aligned}
\text { PLAYERS } & \text { The players are the two students } N=\{\text { row, column }\} . \\
\text { STRATEGIES } & \text { Row chooses from } S_{\text {row }}=\{\text { Cafe }, \text { Pub }\} \\
& \text { Column chooses from } S_{\text {column }}=\{\text { Cafe }, \text { Pub }\} . \\
\text { PAYOFFS } & \text { For example, } u_{\text {row }}(\text { Cafe }, \text { Cafe })=4 . \text { The following } \\
& \text { matrix summarises: }
\end{aligned}
$$

Battle of the Sexes

Players The players are the two students $N=\{$ row, column $\}$.

Strategies Row chooses from $S_{\text {row }}=\{$ Cafe,$P u b\}$ Column chooses from $S_{\text {column }}=\{$ Cafe,$P u b\}$. Payofis For examnle, $u_{\text {row }}($ Cafe Cafe $)=4$. The following matrix summarises:

Battle of the Sexes

$$
\begin{aligned}
\text { Players } & \text { The players are the two students } N=\{\text { row, column }\} . \\
\text { StRategies } & \text { Row chooses from } S_{\text {row }}=\{\text { Cafe }, \text { Pub }\} \\
& \text { Column chooses from } S_{\text {column }}=\{\text { Cafe }, \text { Pub }\} . \\
\text { PAyoffs } & \text { For example, } u_{\text {row }}(\text { Cafe }, \text { Cafe })=4 \text {. The following } \\
& \text { matrix summarises: }
\end{aligned}
$$

Battle of the Sexes

$$
\begin{aligned}
\text { Players } & \text { The players are the two students } N=\{\text { row, column }\} . \\
\text { Strategies } & \text { Row chooses from } S_{\text {row }}=\{\text { Cafe }, \text { Pub }\} \\
& \text { Column chooses from } S_{\text {column }}=\{\text { Cafe }, \text { Pub }\} . \\
\text { Payoffs } & \text { For example, } u_{\text {row }}(\text { Cafe, }, \text { Cafe })=4 \text {. The following } \\
& \text { matrix summarises: }
\end{aligned}
$$

	Cafe	Pub
Cafe	4,3	1,1
Pub	0,0	3,4

Battle of the Sexes

In this game, nothing is dominated, so profiles like (Cafe, Pub) are not eliminated. Should they be?

- Column player would play Cafe if row player played Cafe!
- Row player would play Pub if column player played Pub! In other words, after the game, both players may "regret" having n layed their strategies.

This a truly interactive game - best responses depend on what other players do ... next slides!

Battle of the Sexes

In this game, nothing is dominated, so profiles like (Cafe, Pub) are not eliminated. Should they be?

- Column player would play Cafe if row player played Cafe!
- Row player would play Pub if column player played Pub!

In other words, after the game, both players may "regret" having played their
strategies.

This a truly interactive game - best responses depend on what other players do ... next slides!

Battle of the Sexes

In this game, nothing is dominated, so profiles like (Cafe, Pub) are not eliminated. Should they be?

- Column player would play Cafe if row player played Cafe!
- Row player would play Pub if column player played Pub!

In other words, after the game, both players may "regret" having played their strategies.

This a truly interactive game - best responses depend on what other players

Battle of the Sexes

In this game, nothing is dominated, so profiles like (Cafe, Pub) are not eliminated. Should they be?

- Column player would play Cafe if row player played Cafe!
- Row player would play Pub if column player played Pub!

In other words, after the game, both players may "regret" having played their strategies.

This a truly interactive game - best responses depend on what other players do ... next slides!

Nash Equilibrium

Definition: Nash Equilibrium

A Nash equilibrium is a strategy profiles s^{*} such that for every player i,

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}, s_{-i}^{*}\right) \text { for all } s_{i}
$$

At s^{*}, no i regrets playing s_{i}^{*}. Given all the other players' actions, i could not have done better

Best-reply functions

What should each player do given the choices of their opponents? They should "best reply".

Definition: best-reply function

The best-reply function for player i is a function B_{i} such that:

$$
B_{i}\left(s_{-i}\right)=\left\{s_{i} \mid u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \text { for all } s_{i}^{\prime}\right\}
$$

Best-reply functions in Nash

Nash equilibrium can be redefined using best-reply functions:

Definition: Nash equilibrium

s^{*} is a Nash equilibrium if and only if $s_{i}^{*} \in B_{i}\left(s_{-i}^{*}\right)$ for all i.

In words: a Nash equilibrium is a strategy profile of mutual best responses each player picks a best response to the combination of strategies the other

Best-reply functions in Nash

Nash equilibrium can be redefined using best-reply functions:

Definition: Nash equilibrium

s^{*} is a Nash equilibrium if and only if $s_{i}^{*} \in B_{i}\left(s_{-i}^{*}\right)$ for all i.

In words: a Nash equilibrium is a strategy profile of mutual best responses each player picks a best response to the combination of strategies the other players pick.

Example

For the Battle of the Sexes:

- $B_{\text {row }}($ Cafe $)=$ Cafe
- $B_{\text {row }}($ Pub $)=P u b$
- $B_{\text {column }}($ Cafe $)=$ Cafe
- $B_{\text {column }}($ Pub $)=P u b$

So (Cafe, Cafe) is a Nash equilibrium and so is (Pub, Pub) ...

Cook book: how to find pure-strategy Nash equilibria

The best way to find (pure-strategy) Nash equilibria is to underline the best replies for each player:

Cook book: how to find pure-strategy Nash equilibria

The best way to find (pure-strategy) Nash equilibria is to underline the best replies for each player:

	L	C	R
T	5,1	2,0	2,2
M	0,4	1,5	4,5
B	2,4	3,6	1,0

Cook book: how to find pure-strategy Nash equilibria

The best way to find (pure-strategy) Nash equilibria is to underline the best replies for each player:

	L	C	R
T	$\underline{5}, 1$	2,0	2,2
M	0,4	1,5	4,5
B	2,4	3,6	1,0

Cook book: how to find pure-strategy Nash equilibria

The best way to find (pure-strategy) Nash equilibria is to underline the best replies for each player:

	L	C	R
T	$\underline{5}, 1$	2,0	2,2
M	0,4	1,5	4,5
B	2,4	$\underline{3}, 6$	1,0

Cook book: how to find pure-strategy Nash equilibria

The best way to find (pure-strategy) Nash equilibria is to underline the best replies for each player:

	L	C	R
T	$\underline{5}, 1$	2,0	2,2
M	0,4	1,5	$\underline{4}, 5$
B	2,4	$\underline{3}, 6$	1,0

Cook book: how to find pure-strategy Nash equilibria

The best way to find (pure-strategy) Nash equilibria is to underline the best replies for each player:

	L	C	R
T	$\underline{5}, 1$	2,0	$2, \underline{2}$
M	0,4	1,5	$\underline{4}, 5$
B	2,4	$\underline{3}, 6$	1,0

Cook book: how to find pure-strategy Nash equilibria

The best way to find (pure-strategy) Nash equilibria is to underline the best replies for each player:

	L	C	R
T	$\underline{5}, 1$	2,0	$2, \underline{2}$
M	0,4	$1, \underline{5}$	$\underline{4}, 5$
B	2,4	$\underline{3}, 6$	1,0

Cook book: how to find pure-strategy Nash equilibria

The best way to find (pure-strategy) Nash equilibria is to underline the best replies for each player:

	L	C	R
T	$\underline{5}, 1$	2,0	$2, \underline{2}$
M	0,4	$1, \underline{5}$	$\underline{4}, \underline{5}$
B	2,4	$\underline{3}, 6$	1,0

Cook book: how to find pure-strategy Nash equilibria

The best way to find (pure-strategy) Nash equilibria is to underline the best replies for each player:

	L	C	R
T	$\underline{5}, 1$	2,0	$2, \underline{2}$
M	0,4	$1, \underline{5}$	$\underline{4}, \underline{5}$
B	2,4	$\underline{3}, \underline{6}$	1,0

Hawk-dove game

\section*{Player 2
 | | | Hawk | Dove |
| :---: | :---: | :---: | :---: |
| Player 1 | Hawk | $-2,-2$ | 4,0 |
| | Dove | 0,4 | 2,2 |
| | | | |}

Harmony game

A three player game

A three player game

A three player game

A three player game

A three player game

A three player game

A three player game

A three player game

A three player game

A three player game

A three player game

A three player game

A three player game

Matching Pennies

"Each player has a penny. They simultaneously choose whether to put their pennies down heads up (H) or tails up (T). If the pennies match, column receives row's penny, if they don't match, row receives columns' penny."

PLAYERS The players are $N=\{$ row, column $\}$.
Strategies Row chooses from $\{H, T\}$; Column from $\{H, T\}$
Payoffs Represented in the strategic-form matrix:

- Best replies are: $B_{\text {row }}(H)=H, B_{\text {row }}(T)=T, B_{\text {column }}(T)=H$, and $B_{\text {column }}(H)=T$
- There is no pure-strategy Nash equilibrium in this game

Matching Pennies

"Each player has a penny. They simultaneously choose whether to put their pennies down heads up (H) or tails up (T). If the pennies match, column receives row's penny, if they don't match, row receives columns' penny."

Players The players are $N=\{$ row, column $\}$.
Strategies Row chooses from $\{H, T\}$; Column from $\{H, T\}$.
Payoffs Represented in the strategic-form matrix:

- Best replies are: $B_{\text {row }}(H)=H, B_{\text {row }}(T)=T, B_{\text {column }}(T)=H$, and
$B_{\text {column }}(H)=T$
- There is no pure-strategy Nash equilibrium in this game

Matching Pennies

"Each player has a penny. They simultaneously choose whether to put their pennies down heads up (H) or tails up (T). If the pennies match, column receives row's penny, if they don't match, row receives columns' penny."

Players The players are $N=\{$ row, column $\}$.
Strategies Row chooses from $\{H, T\}$; Column from $\{H, T\}$.
PAYOFFS Represented in the strategic-form matrix:

- Best replies are: $B_{\text {row }}(H)=H, B_{\text {row }}(T)=T, B_{\text {column }}(T)=H$, and $B_{\text {column }}(H)=T$
- There is no pure-strategy Nash equilibrium in this game

Matching Pennies

"Each player has a penny. They simultaneously choose whether to put their pennies down heads up (H) or tails up (T). If the pennies match, column receives row's penny, if they don't match, row receives columns' penny."

Players The players are $N=\{$ row, column $\}$.
Strategies Row chooses from $\{H, T\}$; Column from $\{H, T\}$.
PAYOFFS Represented in the strategic-form matrix:

- Best replies are: $B_{\text {row }}(H)=H, B_{\text {row }}(T)=T, B_{\text {column }}(T)=H$, and $B_{\text {column }}(H)=T$
- There is no pure-strategy Nash equilibrium in this game

Matching Pennies

"Each player has a penny. They simultaneously choose whether to put their pennies down heads up (H) or tails up (T). If the pennies match, column receives row's penny, if they don't match, row receives columns' penny."

Players The players are $N=\{$ row, column $\}$.
Strategies Row chooses from $\{H, T\}$; Column from $\{H, T\}$.
Payoffs Represented in the strategic-form matrix:

- Best replies are: $B_{\text {row }}(H)=H, B_{\text {row }}(T)=T, B_{\text {column }}(T)=H$, and $B_{\text {column }}(H)=T$
- There is no pure-strategy Nash equilibrium in this game

Randomizing the strategy

Let one player toss her coin and hence play H with probability 0.5 and L with probability 0.5 .

	H	T
H	$\underline{1},-1$	$-1, \quad \underline{1}$
T	$-1, ~$	$\underline{1}$,

Expected utility of column player when playing H :

Expected utility of column player when playing T :

Randomizing the strategy

Let one player toss her coin and hence play H with probability 0.5 and L with probability 0.5 .

	H	T
H	$\underline{1},-1$	$-1, \quad \underline{1}$
T	$-1, ~$	$\underline{1}$
		,-1

Expected utility of column player when playing H :

$$
\frac{1}{2} \cdot(\quad 1)+\frac{1}{2} \cdot(-1)=0
$$

Expected utility of column player when playing T :

Randomizing the strategy

Let one player toss her coin and hence play H with probability 0.5 and L with probability 0.5 .

		H
T		
H	$\underline{1},-1$	$-1, \quad \underline{1}$
T	-1,	$\underline{1}$
		$\underline{1},-1$

Expected utility of column player when playing H :

$$
\frac{1}{2} \cdot(\quad 1)+\frac{1}{2} \cdot(-1)=0
$$

Expected utility of column player when playing T :

$$
\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot(\quad 1)=0
$$

Randomizing the strategy

Let one player toss her coin and hence play H with probability 0.5 and L with probability 0.5 .

	H	T
H	$\underline{1,-1}$	$-1, \quad \underline{1}$
T	$-1,1$	1, -1

Expected utility of column player when playing H :

$$
\frac{1}{2} \cdot(\quad 1)+\frac{1}{2} \cdot(-1)=0
$$

Expected utility of column player when playing T :

$$
\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot(\quad 1)=0
$$

Column is indifferent! He might decide to also toss a coin!

Mixed strategies

Definition: Mixed strategy

A mixed strategy σ_{i} for a player i is any probability distribution over his or her set S_{i} of pure strategies. The set of mixed strategies is:

$$
\Delta\left(S_{i}\right)=\left\{x_{i} \in \mathbb{R}_{+}^{\left|S_{i}\right|}: \sum_{h \in S_{i}} x_{i h}=1\right\}
$$

Mixed extension

Definition: Mixed extension

The mixed extension of a game G has players, strategies and payoffs: $\Gamma=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{U_{i}\right\}_{i \in N}\right\rangle$, where
(1) Strategies are probability distributions in the set $\Delta\left(S_{i}\right)$.
(2) U_{i} is player i 's expected utility function assigning a real number to every strategy profile $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$.

Mixed Profiles

Suppose player i plays mixed strategy σ_{i} (that is, a list of probabilities). Denote their probability that this places on pure strategy s_{i} as $\sigma_{i}\left(s_{i}\right)$. Then:

$$
U_{i}(\sigma)=\sum_{s} u_{i}(s) \prod_{j \in N} \sigma_{j}\left(s_{j}\right)
$$

Definition: opponents' strategies

σ_{-i} is a vector of mixed strategies, one for each player, except i. So
$\sigma=\left(\sigma_{i}, \sigma_{-i}\right)$.

Mixed Profiles

Suppose player i plays mixed strategy σ_{i} (that is, a list of probabilities). Denote their probability that this places on pure strategy s_{i} as $\sigma_{i}\left(s_{i}\right)$. Then:

$$
U_{i}(\sigma)=\sum_{s} u_{i}(s) \prod_{j \in N} \sigma_{j}\left(s_{j}\right)
$$

Definition: opponents' strategies

σ_{-i} is a vector of mixed strategies, one for each player, except i. So $\sigma=\left(\sigma_{i}, \sigma_{-i}\right)$.

Example: Matching pennies

- If row player plays $(1,0)$ what should column play?

If row player plays $(0.3,0.7)$ what should column play?

- If row player plays $(0.5,0.5)$ what should column play?

Which mixed strategy should each player use?

Example: Matching pennies

		H
T		
H	$\underline{1},-1$	$-1, \underline{1}$
T	-1,	$\underline{1}$
		$\underline{1},-1$

- If row player plays $(1,0)$ what should column play?
- If row player plays $(0.3,0.7)$ what should column play?
- If row player plays $(0.5,0.5)$ what should column play?

Which mixed strategy should each player use?

Example: Matching pennies

		H
T		
H	$\underline{1},-1$	$-1, \underline{1}$
T	-1,	$\underline{1}$
		$\underline{1},-1$

- If row player plays $(1,0)$ what should column play?
- If row player plays $(0.3,0.7)$ what should column play?
- If row player plays $(0.5,0.5)$ what should column play?

Which mixed strategy should each player use?

Example: Matching pennies

		H
T		
H	$\underline{1},-1$	$-1, \underline{1}$
T	-1,	$\underline{1}$

- If row player plays $(1,0)$ what should column play?
- If row player plays $(0.3,0.7)$ what should column play?
- If row player plays $(0.5,0.5)$ what should column play?

Example: Matching pennies

		H
T		
H	$\underline{1},-1$	$-1, \underline{1}$
T	-1,	$\underline{1}$

- If row player plays $(1,0)$ what should column play?
- If row player plays $(0.3,0.7)$ what should column play?
- If row player plays $(0.5,0.5)$ what should column play?

Which mixed strategy should each player use?

Best-reply function

The definition extends in a straightforward way:

Definition: best-reply function

The best-reply function for player i is a function β_{i} such that:

$$
\beta_{i}\left(\sigma_{-i}\right)=\left\{\sigma_{i} \mid U_{i}\left(\sigma_{i}, \sigma_{-i}\right) \geq U_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right), \text { for all } \sigma_{i}^{\prime}\right\}
$$

Example: Matching pennies

If column player plays $(q, 1-q)$ what should row play?

- $U_{\text {row }}(\boldsymbol{H}, q)=(1-q)-q=1-2 q$, and
- $U_{\text {row }}(T, q)=q-(1-q)=2 q-1$, so ..
- play H if $q<\frac{1}{2}$, play T if $q>\frac{1}{2}$, and...
- indifferent if $a=\frac{1}{2}$: any n will do!

Example: Matching pennies

If column player plays $(q, 1-q)$ what should row play?

- $U_{\text {row }}(H, q)=(1-q)-q=1-2 q$, and
- $U_{\text {row }}(T, q)=q-(1-q)=2 q-1$, so ..
- nlay H if $a<\frac{1}{2}$, nlay T if $a>\frac{1}{2}$, and ...
- indifferent if $q=\frac{1}{2}$: any p will do!

Example: Matching pennies

	H	T
H	$\underline{1},-1$	$-1, \underline{1}$
T	$-1, \quad 1$	$\underline{1,-1}$

If column player plays $(q, 1-q)$ what should row play?

- $U_{\text {row }}(H, q)=(1-q)-q=1-2 q$, and \ldots
- play H if $q<\frac{1}{2}$, play T if $q>\frac{1}{2}$, and..
- indifferent if $q=\frac{1}{2}$: any p will do!

Example: Matching pennies

	H	T
H	$\underline{1},-1$	$-1, \underline{1}$
T	$-1, \quad 1$	$\underline{1,-1}$

If column player plays $(q, 1-q)$ what should row play?

- $U_{\text {row }}(H, q)=(1-q)-q=1-2 q$, and \ldots
- $U_{\text {row }}(T, q)=q-(1-q)=2 q-1$, so \ldots
- indifferent if $q=\frac{1}{2}$: any p will do!

Example: Matching pennies

	H	T
H	$\underline{1},-1$	$-1, \underline{1}$
T	$-1,1$	$\underline{1,-1}$

If column player plays $(q, 1-q)$ what should row play?

- $U_{\text {row }}(H, q)=(1-q)-q=1-2 q$, and \ldots
- $U_{\text {row }}(T, q)=q-(1-q)=2 q-1$, so \ldots
- play H if $q<\frac{1}{2}$, play T if $q>\frac{1}{2}$, and \ldots

Example: Matching pennies

	H	T
H	$\underline{1},-1$	$-1, \quad \underline{1}$
T	$-1,1$	$\underline{1},-1$

If column player plays $(q, 1-q)$ what should row play?

- $U_{\text {row }}(H, q)=(1-q)-q=1-2 q$, and \ldots
- $U_{\text {row }}(T, q)=q-(1-q)=2 q-1$, so \ldots
- play H if $q<\frac{1}{2}$, play T if $q>\frac{1}{2}$, and \ldots
- indifferent if $q=\frac{1}{2}$: any p will do!

Best-reply graph

Mixed-Strategy Nash Equilibrium

Definition: Mixed-Strategy Nash Equilibrium

A mixed-strategy Nash equilibrium is a profile σ^{*} such that,

$$
U_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geq U_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right) \text { for all } \sigma_{i} \text { and } i
$$

Best replies and Nash equilibrium

Proposition

$x \in \Delta(S)$ is a Nash equilibrium if $x \in \beta(x)$.

Note that if $x \in \Delta(S)$ is a mixed Nash equilibrium, then every pure strategy in the support of each strategy x_{i} is a best reply to x :

Best replies and Nash equilibrium

Proposition

$x \in \Delta(S)$ is a Nash equilibrium if $x \in \beta(x)$.

Note that if $x \in \Delta(S)$ is a mixed Nash equilibrium, then every pure strategy in the support of each strategy x_{i} is a best reply to x :

$$
s_{i} \in \operatorname{supp}\left(x_{i}\right) \Rightarrow s_{i} \in \beta_{i}(x)
$$

Indifference and Matching Pennies

Indifference and Matching Pennies

Suppose row player mixes with probability p and $1-p$ on H and T :

$$
\begin{aligned}
U_{\text {column }}(H, p) & =p \cdot(1)+(1-p) \cdot(-1)=2 p-1 \\
U_{\text {column }}(T, p) & =p \cdot(-1)+(1-p) \cdot(1)=1-2 p
\end{aligned}
$$

Indifference and Matching Pennies

Suppose row player mixes with probability p and $1-p$ on H and T :

$$
\begin{aligned}
U_{\text {column }}(H, p) & =p \cdot(1)+(1-p) \cdot(-1)=2 p-1 \\
U_{\text {column }}(T, p) & =p \cdot(-1)+(1-p) \cdot(1)=1-2 p
\end{aligned}
$$

Column player is indifferent when $2 p-1=1-2 p \Leftrightarrow p=\frac{1}{2}$. Similarly for row player.

Indifference and Matching Pennies

Suppose row player mixes with probability p and $1-p$ on H and T :

$$
\begin{aligned}
U_{\text {column }}(H, p) & =p \cdot(1)+(1-p) \cdot(-1)=2 p-1 \\
U_{\text {column }}(T, p) & =p \cdot(-1)+(1-p) \cdot(1)=1-2 p
\end{aligned}
$$

Column player is indifferent when $2 p-1=1-2 p \Leftrightarrow p=\frac{1}{2}$.
Similarly for row player.
The only Nash equilibrium involves both players mixing with probability $\frac{1}{2}$.

Indifference and Matching Pennies

Battle of the Sexes revisited

Players The players are the two students $N=\{$ row, column $\}$.
Strategies Row chooses from $S_{\text {row }}=\{$ Cafe, Pub $\}$
Column chooses from $S_{\text {column }}=\{$ Cafe, Pub $\}$.
Payoffs For example, $u_{\text {row }}($ Cafe, Cafe $)=4$. The following matrix summarises:

Battle of the Sexes revisited

Players The players are the two students $N=\{$ row, column $\}$.
Strategies Row chooses from $S_{\text {row }}=\{$ Cafe, Pub $\}$ Column chooses from $S_{\text {column }}=\{$ Cafe, Pub $\}$.
Payoffs For example, $u_{\text {row }}($ Cafe, Cafe $)=4$. The following matrix summarises:

Battle of the Sexes revisited

Players The players are the two students $N=\{$ row, column $\}$.
Strategies Row chooses from $S_{\text {row }}=\{$ Cafe, Pub $\}$ Column chooses from $S_{\text {column }}=\{$ Cafe, Pub $\}$.
Payoffs For example, $u_{\text {row }}($ Cafe, Cafe $)=4$. The following matrix summarises:

Expected

Battle of the Sexes revisited

Players The players are the two students $N=\{$ row, column $\}$.
Strategies Row chooses from $S_{\text {row }}=\{$ Cafe, Pub $\}$ Column chooses from $S_{\text {column }}=\{$ Cafe, Pub $\}$.
Payoffs For example, $u_{\text {row }}($ Cafe, Cafe $)=4$. The following matrix summarises:

Expected

Battle of the Sexes revisited

Players The players are the two students $N=\{$ row, column $\}$.
Strategies Row chooses from $S_{\text {row }}=\{$ Cafe, Pub $\}$ Column chooses from $S_{\text {column }}=\{$ Cafe, Pub $\}$.
Payoffs For example, $u_{\text {row }}($ Cafe, Cafe $)=4$. The following matrix summarises:

Battle of the Sexes revisited

Players The players are the two students $N=\{$ row, column $\}$.
Strategies Row chooses from $S_{\text {row }}=\{$ Cafe, Pub $\}$ Column chooses from $S_{\text {column }}=\{$ Cafe, Pub $\}$.
Payoffs For example, $u_{\text {row }}($ Cafe, Cafe $)=4$. The following matrix summarises:

Battle of the Sexes revisited

$$
\begin{aligned}
\text { Players } & \text { The players are the two students } N=\{\text { row, column }\} . \\
\text { StRategies } & \text { Row chooses from } S_{\text {row }}=\{\text { Cafe }, \text { Pub }\} \\
& \text { Column chooses from } S_{\text {column }}=\{\text { Cafe }, \text { Pub }\} . \\
\text { Payoffs } & \text { For example, } u_{\text {row }}(\text { Cafe }, \text { Cafe })=4 . \text { The following } \\
& \text { matrix summarises: }
\end{aligned}
$$

Column chooses $q=1$ whenever $3 p>p+4(1-p) \Leftrightarrow 6 p>4 \Leftrightarrow p>\frac{2}{3}$.

Battle of the Sexes revisited

$$
\begin{aligned}
\text { Players } & \text { The players are the two students } N=\{\text { row, column }\} . \\
\text { StRategies } & \text { Row chooses from } S_{\text {row }}=\{\text { Cafe }, \text { Pub }\} \\
& \text { Column chooses from } S_{\text {column }}=\{\text { Cafe }, \text { Pub }\} . \\
\text { Payoffs } & \text { For example, } u_{\text {row }}(\text { Cafe }, \text { Cafe })=4 . \text { The following } \\
& \text { matrix summarises: }
\end{aligned}
$$

Column chooses $q=1$ whenever $3 p>p+4(1-p) \Leftrightarrow 6 p>4 \Leftrightarrow p>\frac{2}{3}$.
Row chooses $p=1$ whenever $4 q+(1-q)>3(1-q) \Leftrightarrow 6 q>2 \Leftrightarrow q>\frac{1}{3}$.

Battle of the Sexes: Best-reply graph

Battle of the Sexes: Best-reply graph

There is a mixed Nash equilibrium with $p=\frac{2}{3}$ and $q=\frac{1}{3}$.

Battle of the Sexes: Expected payoff

Battle of the Sexes: Expected payoff

Frequency of play:

Battle of the Sexes: Expected payoff

Frequency of play:

	Cafe $(1 / 3)$	$\operatorname{Pub}(2 / 3)$
$\operatorname{Cafe}(2 / 3)$	$2 / 9$	$4 / 9$
$\operatorname{Pub}(1 / 3)$	$1 / 9$	$2 / 9$

Battle of the Sexes: Expected payoff

Frequency of play:

	Cafe $(1 / 3)$	$\operatorname{Pub}(2 / 3)$
Cafe $(2 / 3)$	$2 / 9$	$4 / 9$
$\operatorname{Pub}(1 / 3)$	$1 / 9$	$2 / 9$

Expected utility to row player: 2

Battle of the Sexes: Expected payoff

Frequency of play:

	Cafe $(1 / 3)$	$\operatorname{Pub}(2 / 3)$
Cafe $(2 / 3)$	$2 / 9$	$4 / 9$
$\operatorname{Pub}(1 / 3)$	$1 / 9$	$2 / 9$

Expected utility to row player: 2
Expected utility to column player: 2

Example

\[

\]

Example

There are two pure-strategy Nash equilibria, at (B, L) and (T, R).

Example

There are two pure-strategy Nash equilibria, at (B, L) and (T, R).

If row player places probability p on T and probability $1-p$ on B.

Example

There are two pure-strategy Nash equilibria, at (B, L) and (T, R).

If row player places probability p on T and probability $1-p$ on B.
\Rightarrow Column player's best reply is to play L if $2(1-p) \geq 5 p$, i.e., $p \leq \frac{2}{7}$.

Example

There are two pure-strategy Nash equilibria, at (B, L) and (T, R).

If row player places probability p on T and probability $1-p$ on B.
\Rightarrow Column player's best reply is to play L if $2(1-p) \geq 5 p$, i.e., $p \leq \frac{2}{7}$.
If column player places probability q on L and $(1-q)$ on R.

Example

There are two pure-strategy Nash equilibria, at (B, L) and (T, R).

If row player places probability p on T and probability $1-p$ on B.
\Rightarrow Column player's best reply is to play L if $2(1-p) \geq 5 p$, i.e., $p \leq \frac{2}{7}$.
If column player places probability q on L and $(1-q)$ on R.
$\Rightarrow B$ is a best reply. T is only a best reply to $q=0$.
Note that T is weakly dominated by B.

The best-reply graph

The best-reply graph

There is a continuum of mixed equilibria at $\frac{2}{7} \leq p \leq 1$, all with $q=0$.

Example: Expected payoffs of mixed NEs

L	R	
T	0,0	,
B	$\underline{3}, \underline{5}$	
	$\underline{2}, \underline{2}$	$\underline{3}, 0$

Example: Expected payoffs of mixed NEs

L	R	
T	R	
	0,0	$\underline{3}, \underline{5}$
	$\underline{2}, \underline{2}$	$\underline{3}, 0$

Frequency of play:

Example: Expected payoffs of mixed NEs

L	R	
T	R	
	0,0	$\underline{3}, \underline{5}$
	$\underline{2}, \underline{2}$	$\underline{3}, 0$

Frequency of play:

	Cafe (0)	$\operatorname{Pub}(1)$
$\operatorname{Cafe}(p>2 / 7)$	0	p
$\operatorname{Pub}(1-p)$	0	$1-p$

Example: Expected payoffs of mixed NEs

	L	R
T	0, 0	3, $\underline{5}$
B	$\underline{2,2}$	3, 0

Frequency of play:

	$\operatorname{Cafe}(0)$	$\operatorname{Pub}(1)$
$\operatorname{Cafe}(p>2 / 7)$	0	p
$\operatorname{Pub}(1-p)$	0	$1-p$

Expected utility to row player: 3
Expected utility to column player: $5 \cdot p \in(10 / 7 \approx 1.4,5]$

Weakly and strictly dominated strategies

	L	R
T	0, 0	$\underline{3}, \underline{5}$
B	$\underline{2,2}$	$\underline{3}, 0$

- A weakly dominated strategy may play a part in a mixed (or pure) Nash equilibrium.
A strictly dominated pure strategy cannot play a part in a Nash equilibrium!
- Any mixed strategy which places positive weight on a strictly dominated pure strategy is itself strictly dominated. This can be seen by moving weight away from the dominated strategy.

Weakly and strictly dominated strategies

L	R	
T		, 0
B	$\underline{3}, \underline{5}$	
	$\underline{2}, \underline{2}$	$\underline{3}, 0$

- A weakly dominated strategy may play a part in a mixed (or pure) Nash equilibrium.

Weakly and strictly dominated strategies

L	R	
T		, 0
B	$\underline{3}, \underline{5}$	
	$\underline{2}, \underline{2}$	$\underline{3}, 0$

- A weakly dominated strategy may play a part in a mixed (or pure) Nash equilibrium.
- A strictly dominated pure strategy cannot play a part in a Nash equilibrium!
- Any mixed strategy which places positive weight on a strictly dominated pure strategy is itself strictly dominated. This can be seen by moving weight away from the dominated strategy.

Weakly and strictly dominated strategies

	L	R
T	0, 0	3, 5
B	2,2	3, 0

- A weakly dominated strategy may play a part in a mixed (or pure) Nash equilibrium.
- A strictly dominated pure strategy cannot play a part in a Nash equilibrium!
- Any mixed strategy which places positive weight on a strictly dominated pure strategy is itself strictly dominated. This can be seen by moving weight away from the dominated strategy.

Dominated mixed strategies

Recall: A strictly dominated pure strategy cannot play a part in a Nash equilibrium!
But: A mixed strategy can be dominated by a pure even if all pure strategies in its support are not dominated.

	L		M		R	
T	3	8	0	0	1	5
B	0	0	3	8		5

Dominated mixed strategies

Recall: A strictly dominated pure strategy cannot play a part in a Nash equilibrium!
But: A mixed strategy can be dominated by a pure even if all pure strategies in its support are not dominated.

	L		M		R	
T	3	8	0	0	1	5
B	0	0	3	8		5

Neither the pure strategy L nor M are strictly dominated by R.

Dominated mixed strategies

Recall: A strictly dominated pure strategy cannot play a part in a Nash equilibrium!
But: A mixed strategy can be dominated by a pure even if all pure strategies in its support are not dominated.

	L		M		R	
T	3	8	0	0	1	5
B	0	0	3	8		5

Neither the pure strategy L nor M are strictly dominated by R.

The strategy which places probability $\frac{1}{2}$ on L and $\frac{1}{2}$ on M earns 4 .

Dominated mixed strategies

Recall: A strictly dominated pure strategy cannot play a part in a Nash equilibrium!
But: A mixed strategy can be dominated by a pure even if all pure strategies in its support are not dominated.

	L		M		R	
T	3	8	0	0	1	5
B	0	0	3	8		5

Neither the pure strategy L nor M are strictly dominated by R.

The strategy which places probability $\frac{1}{2}$ on L and $\frac{1}{2}$ on M earns 4 .

This is strictly dominated by R earning 5 .

Dominated mixed strategies

Recall: A strictly dominated pure strategy cannot play a part in a Nash equilibrium!
But: A mixed strategy can be dominated by a pure even if all pure strategies in its support are not dominated.

	L		M		R	
T	3	8	0	0	1	5
B	0	0	3	8	1	5

Neither the pure strategy L nor M are strictly dominated by R.
The strategy which places probability $\frac{1}{2}$ on L and $\frac{1}{2}$ on M earns 4 .
This is strictly dominated by R earning 5 .

Now: find all pure and mixed equilibria.

Example

	L		M		R	
T	3	8	0	0	1	5
B	0	0	3	8	1	5

Example

		L		M		R
T	$\underline{3}$	$\underline{8}$	0	0	$\underline{1}$	5
B		0				

Pure-strategy Nash equilibria: (T, L) and (B, M).

Example

	L		M		
		R			
T	$\underline{3}$		$\underline{8}$	0	0
$\underline{1}$	$\underline{5}$				
	0	0	$\underline{3}$	$\underline{8}$	$\underline{1}$

Pure-strategy Nash equilibria: (T, L) and (B, M).
If row player places probability p on T and probability $1-p$ on B.

Example

	L		M		R	
T	$\underline{3}$	$\underline{8}$	0	0	$\underline{1}$	5
B	0	0	3	8	$\underline{1}$	5

Pure-strategy Nash equilibria: (T, L) and (B, M).
If row player places probability p on T and probability $1-p$ on B.
\Rightarrow Column player's best reply is to play
L if $p \geq 5 / 8$
M if $p \leq 3 / 8$
R if $3 / 8 \leq p \leq 5 / 8$

Example

	L		M		R	
T	3	$\underline{8}$	0	0	1	5
B	0	0	3	8	1	5

Pure-strategy Nash equilibria: (T, L) and (B, M).
If row player places probability p on T and probability $1-p$ on B.
\Rightarrow Column player's best reply is to play $\quad L$ if $p \geq 5 / 8$
M if $p \leq 3 / 8$
R if $3 / 8 \leq p \leq 5 / 8$

If column player places probability q on L, s on M, and $1-q-s$ on R.

Example

	L		M		R	
T	3	$\underline{8}$	0	0	1	5
B	0	0	3	8	1	5

Pure-strategy Nash equilibria: (T, L) and (B, M).
If row player places probability p on T and probability $1-p$ on B.
\Rightarrow Column player's best reply is to play $\quad L$ if $p \geq 5 / 8$
M if $p \leq 3 / 8$
R if $3 / 8 \leq p \leq 5 / 8$

If column player places probability q on L, s on M, and $1-q-s$ on R.
\Rightarrow Row player's unique best reply is to play

$$
\begin{aligned}
& T \text { if } q \geq s, q>0 \\
& B \text { if } q \leq s, s>0
\end{aligned}
$$

Example

	L		M		R	
T	$\underline{3}$	$\underline{8}$	0	0	$\underline{1}$	5
B	0	0	3	8	1	5

Pure-strategy Nash equilibria: (T, L) and (B, M).
If row player places probability p on T and probability $1-p$ on B.
\Rightarrow Column player's best reply is to play

$$
\begin{aligned}
& L \text { if } p \geq 5 / 8 \\
& M \text { if } p \leq 3 / 8 \\
& R \text { if } 3 / 8 \leq p \leq 5 / 8
\end{aligned}
$$

If column player places probability q on L, s on M, and $1-q-s$ on R.
\Rightarrow Row player's unique best reply is to play

$$
\begin{aligned}
& T \text { if } q \geq s, q>0 \\
& B \text { if } q \leq s, s>0
\end{aligned}
$$

There is a set of mixed Nash equilbria:

- Row: $p \in[3 / 8,5 / 8]$ and Column: $q=s=0$

Dominated by mixed strategies

\[

\]

Player 2's Payoff $11 p 11(1-p) 3$
Irrespective of the value of the probability p, R is never a best reply.
For example playing L with probability $1 / 2$ and M with probability $1 / 2$ yields a sure payoff of 5.5 . This mixed strategy strictly dominates R.

Proposition (Pearce, 1984)
A strategy is strictly dominated if and only if it is never a best reply.

Dominated by mixed strategies

\[

\]

Player 2's Payoff $11 p 11(1-p) 3$
Irrespective of the value of the probability p, R is never a best reply.
For example playing L with probability $1 / 2$ and M with probability $1 / 2$ yields a sure payoff of 5.5 . This mixed strategy strictly dominates R.

Proposition (Pearce, 1984)

A strategy is strictly dominated if and only if it is never a best reply.

Dominated by mixed strategies

\[

\]

Player 2's Payoff $11 p 11(1-p) 3$
Irrespective of the value of the probability p, R is never a best reply.
For example playing L with probability $1 / 2$ and M with probability $1 / 2$ yields a sure payoff of 5.5 . This mixed strategy strictly dominates R.

Proposition (Pearce, 1984)

A strategy is strictly dominated if and only if it is never a best reply.

Dominated by mixed strategies

\[

\]

Player 2's Payoff $11 p 11(1-p) 3$
Irrespective of the value of the probability p, R is never a best reply.
For example playing L with probability $1 / 2$ and M with probability $1 / 2$ yields a sure payoff of 5.5 . This mixed strategy strictly dominates R.

Proposition (Pearce, 1984)

A strategy is strictly dominated if and only if it is never a best reply.

Dominated by mixed strategies

\[

\]

Player 2's Payoff $11 p 11(1-p) \quad 3$
Irrespective of the value of the probability p, R is never a best reply.
For example playing L with probability $1 / 2$ and M with probability $1 / 2$ yields a sure payoff of 5.5 . This mixed strategy strictly dominates R.

Proposition (Pearce, 1984)

A strategy is strictly dominated if and only if it is never a best reply.

The equilibrium is at (T, L) by iterative deletion of dominated strategies.

Cook book: How to find mixed Nash equilibria

- Find all pure strategy NE.

Check whether there is an equilibrium in which row mixes between several of her strategies:

- Identify candidates:

Cook book: How to find mixed Nash equilibria

- Find all pure strategy NE.

Check whether there is an equilibrium in which row mixes between several of her strategies:

- Identify candidates:
- If there is such an equilibrium then each of these strategies must yield the same expected payoff given column's equilibrium strategy.
- Write down these payoffs and solve for column's equilibrium mix.
- Reverse: Look at the strategies that column is mixing on and solve for row's equilibrium mix.
- Check candidates:

Cook book: How to find mixed Nash equilibria

- Find all pure strategy NE.

Check whether there is an equilibrium in which row mixes between several of her strategies:

- Identify candidates:
- If there is such an equilibrium then each of these strategies must yield the same expected payoff given column's equilibrium strategy.
- Reverse: Look at the strategies that column is mixing on and solve for row's equilibrium mix.
- Check candidates:

Cook book: How to find mixed Nash equilibria

- Find all pure strategy NE.

Check whether there is an equilibrium in which row mixes between several of her strategies:

- Identify candidates:
- If there is such an equilibrium then each of these strategies must yield the same expected payoff given column's equilibrium strategy.
- Write down these payoffs and solve for column's equilibrium mix. row's equilibrium mix.
- Check candidates:

Cook book: How to find mixed Nash equilibria

- Find all pure strategy NE.

Check whether there is an equilibrium in which row mixes between several of her strategies:

- Identify candidates:
- If there is such an equilibrium then each of these strategies must yield the same expected payoff given column's equilibrium strategy.
- Write down these payoffs and solve for column's equilibrium mix.
- Reverse: Look at the strategies that column is mixing on and solve for row's equilibrium mix.

Cook book: How to find mixed Nash equilibria

- Find all pure strategy NE.

Check whether there is an equilibrium in which row mixes between several of her strategies:

- Identify candidates:
- If there is such an equilibrium then each of these strategies must yield the same expected payoff given column's equilibrium strategy.
- Write down these payoffs and solve for column's equilibrium mix.
- Reverse: Look at the strategies that column is mixing on and solve for row's equilibrium mix.
- Check candidates:
- The equilibrium mix we found must indeed involve the strategies for row we started with.
- All probabilities we found must indeed be probabilities (between 0 and 1). - Neither player has a positive deviation.

Cook book: How to find mixed Nash equilibria

- Find all pure strategy NE.

Check whether there is an equilibrium in which row mixes between several of her strategies:

- Identify candidates:
- If there is such an equilibrium then each of these strategies must yield the same expected payoff given column's equilibrium strategy.
- Write down these payoffs and solve for column's equilibrium mix.
- Reverse: Look at the strategies that column is mixing on and solve for row's equilibrium mix.
- Check candidates:
- The equilibrium mix we found must indeed involve the strategies for row we started with.
- All probabilities we found must indeed be probabilities (between 0 and 1). - Neither player has a positive deviation.

Cook book: How to find mixed Nash equilibria

- Find all pure strategy NE.

Check whether there is an equilibrium in which row mixes between several of her strategies:

- Identify candidates:
- If there is such an equilibrium then each of these strategies must yield the same expected payoff given column's equilibrium strategy.
- Write down these payoffs and solve for column's equilibrium mix.
- Reverse: Look at the strategies that column is mixing on and solve for row's equilibrium mix.
- Check candidates:
- The equilibrium mix we found must indeed involve the strategies for row we started with.
- All probabilities we found must indeed be probabilities (between 0 and 1).

Cook book: How to find mixed Nash equilibria

- Find all pure strategy NE.

Check whether there is an equilibrium in which row mixes between several of her strategies:

- Identify candidates:
- If there is such an equilibrium then each of these strategies must yield the same expected payoff given column's equilibrium strategy.
- Write down these payoffs and solve for column's equilibrium mix.
- Reverse: Look at the strategies that column is mixing on and solve for row's equilibrium mix.
- Check candidates:
- The equilibrium mix we found must indeed involve the strategies for row we started with.
- All probabilities we found must indeed be probabilities (between 0 and 1).
- Neither player has a positive deviation.

Nash's equilibrium existence theorem

Theorem (Nash 1951)

Every finite game has at least one [Nash] equilibrium in mixed strategies.

Original paper is this week's reading.

Nash's equilibrium existence theorem

Theorem (Nash 1951)

Every finite game has at least one [Nash] equilibrium in mixed strategies.

Original paper is this week's reading.

Nash's contribution - remarks

- Put economics beyond one branch of social sciences but allowed it to today encompass all analytical fields in social sciences and beyond

```
- political sciences: strategic interactions, contracts,...
- biology: evolution
- economics: auctions, trading, contracts, ...
- computer sciences: cloud computing, car routing, ...
- sociology: opinion formation, political polarization,...
```

- Nash recognized that his equilibrium concept can be used to study
- non-cooperative games
- cooperative games - bargaining
- does not need to assume perfect rationality - mass-action interpretation and evolutionary game theory

Nash's contribution - remarks

- Put economics beyond one branch of social sciences but allowed it to today encompass all analytical fields in social sciences and beyond
- political sciences: strategic interactions, contracts, ...
o biology: evolution
- economics: auctions, trading, contracts, ...
- computer sciences: cloud computing, car routing, ...
- sociology: opinion formation, political polarization, ...
- Nash recognized that his equilibrium concept can be used to study
- non-coonerative games
- cooperative games - bargaining
- does not need to assume perfect rationality - mass-action interpretation and evolutionary game theory

Nash's contribution - remarks

- Put economics beyond one branch of social sciences but allowed it to today encompass all analytical fields in social sciences and beyond
- political sciences: strategic interactions, contracts, ...
- biology: evolution
- economics: auctions, trading, contracts, ...
- computer sciences: cloud computing, car routing, ...
- sociology: opinion formation, political polarization, ...
- Nash recognized that his equilibrium concept can be used to study
- non-cooperative games
- cooperative games - bargaining
- does not need to assume perfect rationality - mass-action interpretation and evolutionary game theory

Nash's contribution - remarks

- Put economics beyond one branch of social sciences but allowed it to today encompass all analytical fields in social sciences and beyond
- political sciences: strategic interactions, contracts, ...
- biology: evolution
- economics: auctions, trading, contracts, ...
- computer sciences: cloud computing, car routing, ...
- sociology: opinion formation, political polarization, ...
- Nash recognized that his equilibrium concept can be used to study
- non-cooperative games
- cooperative games - bargaining
- does not need to assume perfect rationality - mass-action interpretation and evolutionary game theory

Nash's contribution - remarks

- Put economics beyond one branch of social sciences but allowed it to today encompass all analytical fields in social sciences and beyond
- political sciences: strategic interactions, contracts, ...
- biology: evolution
- economics: auctions, trading, contracts, ...
- computer sciences: cloud computing, car routing, ...
- sociology: opinion formation, political polarization, ...
- Nash recognized that his equilibrium concept can be used to study
- non-cooperative games
- cooperative games - bargaining
- does not need to assume perfect rationality - mass-action interpretation and evolutionary game theory

Nash's contribution - remarks

- Put economics beyond one branch of social sciences but allowed it to today encompass all analytical fields in social sciences and beyond
- political sciences: strategic interactions, contracts, ...
- biology: evolution
- economics: auctions, trading, contracts, ...
- computer sciences: cloud computing, car routing, ...
- sociology: opinion formation, political polarization, ...
- ...
- Nash recognized that his equilibrium concept can be used to study
- non-cooperative games
- cooperative games - barg aining
- does not need to assume perfect rationality - mass-action interpretation and evolutionary game theory

Nash's contribution - remarks

- Put economics beyond one branch of social sciences but allowed it to today encompass all analytical fields in social sciences and beyond
- political sciences: strategic interactions, contracts, ...
- biology: evolution
- economics: auctions, trading, contracts, ...
- computer sciences: cloud computing, car routing, ...
- sociology: opinion formation, political polarization, ...
- ...
- Nash recognized that his equilibrium concept can be used to study
- non-cooperative games
- cooperative games - bargaining
- does not need to assume perfect rationality - mass-action interpretation and evolutionary game theory

Nash's contribution - remarks

- Put economics beyond one branch of social sciences but allowed it to today encompass all analytical fields in social sciences and beyond
- political sciences: strategic interactions, contracts, ...
- biology: evolution
- economics: auctions, trading, contracts, ...
- computer sciences: cloud computing, car routing, ...
- sociology: opinion formation, political polarization, ...
- ...
- Nash recognized that his equilibrium concept can be used to study
- non-cooperative games
- cooperative games - bargaining
- does not need to assume perfect rationality - mass-action interpretation and evolutionary game theory

Nash's contribution - remarks

- Put economics beyond one branch of social sciences but allowed it to today encompass all analytical fields in social sciences and beyond
- political sciences: strategic interactions, contracts, ...
- biology: evolution
- economics: auctions, trading, contracts, ...
- computer sciences: cloud computing, car routing, ...
- sociology: opinion formation, political polarization, ...
- ...
- Nash recognized that his equilibrium concept can be used to study
- non-cooperative games
- cooperative games - bargaining
- does not need to assume perfect rationality - mass-action interpretation and evolutionary game theory

Nash's contribution - remarks

- Put economics beyond one branch of social sciences but allowed it to today encompass all analytical fields in social sciences and beyond
- political sciences: strategic interactions, contracts, ...
- biology: evolution
- economics: auctions, trading, contracts, ...
- computer sciences: cloud computing, car routing, ...
- sociology: opinion formation, political polarization, ...
- ...
- Nash recognized that his equilibrium concept can be used to study
- non-cooperative games
- cooperative games - bargaining
- does not need to assume perfect rationality - mass-action interpretation and evolutionary game theory

THANKS EVERYBODY

See you next week!
And keep checking the website for new materials as we progress:
http://www.gametheory.online

Voluntary extra reading: Proof of Nash's theorem; not part of exam

Brouwer's fixed point theorem

Theorem (Brouwer)

Given $S \subset \mathbb{R}^{n}$ convex and compact (bounded and closed), $f: S \rightarrow S$ continuous. Then f has at least one fixed point $s \in S$ with $f(s)=s$.

Brouwer's fixed point theorem

Theorem (Brouwer)

Given $S \subset \mathbb{R}^{n}$ convex and compact (bounded and closed), $f: S \rightarrow S$ continuous. Then f has at least one fixed point $s \in S$ with $f(s)=s$.

Example $S=[0,1]$

Brouwer's fixed point theorem

Theorem (Brouwer)

Given $S \subset \mathbb{R}^{n}$ convex and compact (bounded and closed), $f: S \rightarrow S$ continuous. Then f has at least one fixed point $s \in S$ with $f(s)=s$.

Example $S=(0,1), f(s)=s^{2}$, no fixed point

Brouwer's fixed point theorem

Theorem (Brouwer)

Given $S \subset \mathbb{R}^{n}$ convex and compact (bounded and closed), $f: S \rightarrow S$ continuous. Then f has at least one fixed point $s \in S$ with $f(s)=s$.

Example $S=$ unit disk, f rotation, unique fixed point 0

Puzzle: the football which cannot be moved

Theorem (Brouwer)

Given $S \subset \mathbb{R}^{n}$ convex and compact (bounded and closed), $f: S \rightarrow S$ continuous. Then f has at least one fixed point $s \in S$ with $f(s)=s$.

Can you move a football on its spot such that no point on its sphere (surface) remains in the same spot?

Proof of Nash via Bouwer

The polyhedron $\Delta(S)$ is non-empty, convex and compact.

Hence, by Bouwer, every continuous function that maps $\Delta(S)$ into itself has at least one fix point.

We thus have to find a continuous function $f: \Delta(S) \rightarrow \Delta(S)$ such that every fix point under f is a Nash equilibrium.

Nash's construction

For each player i and strategy profile σ define the excess payoff player i receives when playing pure strategy $h \in S_{i}$ in comparison with σ_{i}

$$
v_{i h}(\sigma)=\max \left\{0, U_{i}\left(e_{i}^{h}, \sigma_{-i}\right)-U_{i}(\sigma)\right\}
$$

where e_{i}^{h} is the unit vector with position h equal to 1 .
Let for all $i \in N, h \in S_{i}$:

where $\sigma_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i\left|S_{i}\right|}\right)$.

Nash's construction

For each player i and strategy profile σ define the excess payoff player i receives when playing pure strategy $h \in S_{i}$ in comparison with σ_{i}

$$
v_{i h}(\sigma)=\max \left\{0, U_{i}\left(e_{i}^{h}, \sigma_{-i}\right)-U_{i}(\sigma)\right\}
$$

where e_{i}^{h} is the unit vector with position h equal to 1 .
Let for all $i \in N, h \in S_{i}$:

$$
f_{i h}(\sigma)=\frac{1+v_{i h}(\sigma)}{1+\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)} x_{i h}
$$

where $\sigma_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i\left|S_{i}\right|}\right)$.

Nash's construction

$$
f_{i h}(\sigma)=\frac{1+v_{i h}(\sigma)}{1+\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)} x_{i h}
$$

We have

- $f_{\text {ih }}(\sigma) \geq 0$
- $\sum_{h} f_{i h}(\sigma)=1$ for all $i \in N$ and $\sigma \in \Delta(S)$
- $f_{i h}(\sigma)$ is continuous in σ

Thus f is a continuous mapping of $\Delta(S)$ to itself
$\Rightarrow f$ has at least one fix point

Nash's construction

Suppose that σ is a fixpoint of f, that is $\sigma=f(\sigma)$. We must have

$$
0=f_{i h}(\sigma)-x_{i h}
$$

Nash's construction

Suppose that σ is a fixpoint of f, that is $\sigma=f(\sigma)$. We must have

$$
\begin{aligned}
0 & =f_{i h}(\sigma)-x_{i h} \\
& =\frac{1+v_{i h}(\sigma)}{1+\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)} x_{i h}-x_{i h}
\end{aligned}
$$

Nash's construction

Suppose that σ is a fixpoint of f, that is $\sigma=f(\sigma)$. We must have

$$
\begin{aligned}
0 & =f_{i h}(\sigma)-x_{i h} \\
& =\frac{1+v_{i h}(\sigma)}{1+\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)} x_{i h}-x_{i h} \\
& =\frac{x_{i h}+v_{i h}(\sigma) x_{i h}-x_{i h}-x_{i h} \sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)}{1+\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)}
\end{aligned}
$$

Nash's construction

Suppose that σ is a fixpoint of f, that is $\sigma=f(\sigma)$. We must have

$$
\begin{aligned}
0 & =f_{i h}(\sigma)-x_{i h} \\
& =\frac{1+v_{i h}(\sigma)}{1+\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)} x_{i h}-x_{i h} \\
& =\frac{x_{i h}+v_{i h}(\sigma) x_{i h}-x_{i h}-x_{i h} \sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)}{1+\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)} \\
& =\left[v_{i h}(\sigma)-\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)\right] x_{i h}=0
\end{aligned}
$$

Nash's construction

Suppose that σ is a fixpoint of f, that is $\sigma=f(\sigma)$. We must have

$$
\begin{aligned}
0 & =f_{i h}(\sigma)-x_{i h} \\
& =\frac{1+v_{i h}(\sigma)}{1+\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)} x_{i h}-x_{i h} \\
& =\frac{x_{i h}+v_{i h}(\sigma) x_{i h}-x_{i h}-x_{i h} \sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)}{1+\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)} \\
& =\left[v_{i h}(\sigma)-\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)\right] x_{i h}=0
\end{aligned}
$$

for all $i \in N, h \in S_{i}$.

Nash's construction: fixpoint \Longleftrightarrow equilibrium

$$
\left[v_{i h}(\sigma)-\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)\right] x_{i h}=0
$$

" \Rightarrow ": This equation is satisfied for $v_{i h}(\sigma)=0$ for all $i \in N, h \in S_{i}$, that is, σ is a [Nash] equilibrium.
$" \Leftarrow "$: Suppose the equation is satisfied by some $\sigma \in \Delta(S)$ which is not a Nash equilibrium:
for all i, h with $x_{i h}>0$.
But this implies that $v_{i h}=0$ for all such i, h, since otherwise all used pure
strategies would earn above average, an impossibility.

Nash's construction: fixpoint \Longleftrightarrow equilibrium

$$
\left[v_{i h}(\sigma)-\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)\right] x_{i h}=0
$$

$" \Rightarrow$ ": This equation is satisfied for $v_{i h}(\sigma)=0$ for all $i \in N, h \in S_{i}$, that is, σ is a [Nash] equilibrium.
" $\Leftarrow "$: Suppose the equation is satisfied by some $\sigma \in \Delta(S)$ which is not a Nash equilibrium:

$$
v_{i h}(\sigma)=\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)
$$

for all i, h with $x_{i h}>0$.
But this implies that $v_{i h}=0$ for all such i, h, since otherwise all used pure
strategies would earn above average, an impossibility.

Nash's construction: fixpoint \Longleftrightarrow equilibrium

$$
\left[v_{i h}(\sigma)-\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)\right] x_{i h}=0
$$

$" \Rightarrow$ ": This equation is satisfied for $v_{i h}(\sigma)=0$ for all $i \in N, h \in S_{i}$, that is, σ is a [Nash] equilibrium.
" $\Leftarrow "$: Suppose the equation is satisfied by some $\sigma \in \Delta(S)$ which is not a Nash equilibrium:

$$
v_{i h}(\sigma)=\sum_{k \in S_{i}} x_{i k} v_{i k}(\sigma)
$$

for all i, h with $x_{i h}>0$.
But this implies that $v_{i h}=0$ for all such i, h, since otherwise all used pure strategies would earn above average, an impossibility.

