COOPERATIVE GAME THEORY: Core and Shapley Value

Heinrich H. Nax

&

heinrich.nax@uzh.ch

Bary S. R. Pradelski

bpradelski@cnrs.ch

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The two branches of game theory

Non-cooperative game theory

- No binding contracts can be written
- Players are individuals
- Nash equilibrium

Cooperative game theory

- Binding contract can be written
- Players are individuals and coalitions of individuals
- Main solution concepts:
 - Core
 - Shapley value
- The focus of today!

Reminder: the ingredients of a noncooperative game

- **Players**: $N = \{1, 2, ..., n\}$
- Actions / strategies: each player chooses s_i from his own finite strategy set; S_i for each i ∈ N
 - **Outcome**: resulting strategy combination: $s = (s_1, ..., s_n) \in (S_i)_{i \in N}$
- **Payoff outcome**: payoffs $u_i = u_i(s)$

The Theory of Games and Economic Behavior (1944)

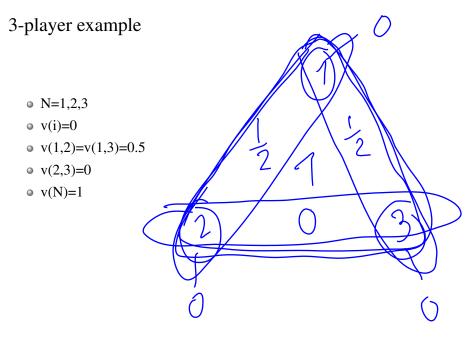
John von Neumann (1903-1957) and Oskar Morgenstern (1902-1977)

The ingredients of a cooperative game

- **Population of players**: $N = \{1, 2, ..., n\}$ (finite)
- **Coalitions**: $C \subseteq N$ form in the population and become players
 - resulting in a coalition structure $\rho = \{C_1, C_2, ..., C_k\}$
- Payoffs: -we still need to specify how- payoffs φ = {φ₁,..., φ_n} come about:
 - something like this: $\phi_i = \phi(\rho, \text{"sharing rule"})$

Cooperative games in characteristic function form (CFG)

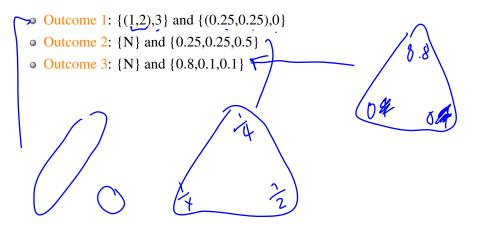
- The game: A CFG defined by 2-tuple G(v, N)
- **Players:** N = 1, 2, ..., n (finite, fixed population)
- **Coalitions**: *disjoint* $C \subseteq N$ form resulting in a coalition structure/ partition ρ
 - \emptyset is an *empty coalition*
 - N is the grand coalition
 - The set of all coalitions is 2^N
 - ρ is the set of all partitions
- Characteristic function: v is the characteristic function form that assigns a *worth* v(C) to each coalition
 - v: $2^N \to R$
 - (and $v(\emptyset) = 0$)



"Transferable utility" and feasibility

- The game: CFG defined by 2-tuple G(v, N)
- Outcome: Coalition structure
 - \frown *partition* $\rho = \{C_1, C_2, ..., C_k\}$ and
 - *payoff allocation*/imputation $\phi = \{\phi_1, ..., \phi_n\}$
- Importantly, v(C) can be "shared" amongst $i \in C$ (transfer of utils)!
- **Feasibility**: in each C, $\sum_{i \in C} \phi_i \le v(C)$

3-player example: some feasible outcomes



Superadditivity assumption

Superadditivity

If two coalitions *C* and *S* are disjoint (i.e. $S \cap C = \emptyset$), then $v(C) + v(S) \le v(C \cup S)$

- i.e. "mergers of coalitions weakly improve their worths"
 - Superadditivity implies *efficiency* of the grand coalition: for all $\rho \in \rho$, $v(N) \ge \sum_{C \in \rho} v(C)$.
 - In our example:

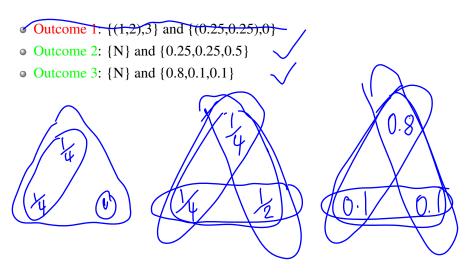
$$v(N) > v(1,2) = v(1,3) > v(2,3) = v(1) = v(2) = v(3).$$

The Core (Gillies 1959)

The Core

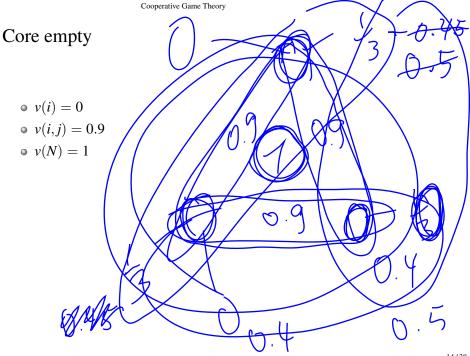
The Core of a superadditive G(v, n) consists of all outcomes where the *grand coalition* forms and payoff allocations ϕ^* are Pareto-efficient: $\sum_{i \in N} \phi_i^* = v(N)$ Unblockable: for all $C \subset N$, $\sum_{i \in C} \phi_i^* \ge v(C)$ • *individual rational*: $\phi_i^* \ge v(i)$ for all *i* • *coalitional rational*: $\sum_{i \in C} \phi_i^* \ge v(C)$ for all *C*

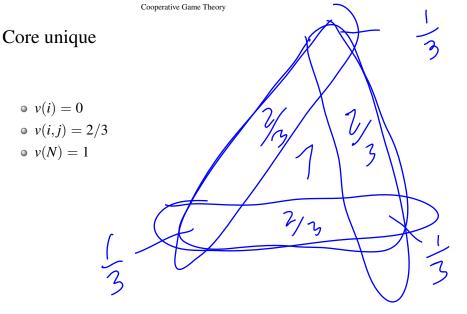
3-player example



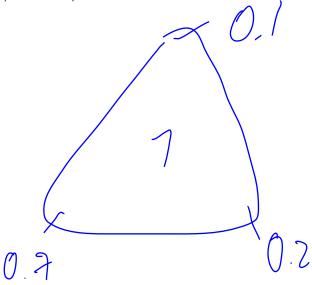
Properties of the Core

- A system of weak linear inequalities defines the Core, which is therefore closed and convex.
- The core can be
 - empty
 - non-empty
 - large





Core large



Bondareva-Shapley Theorem

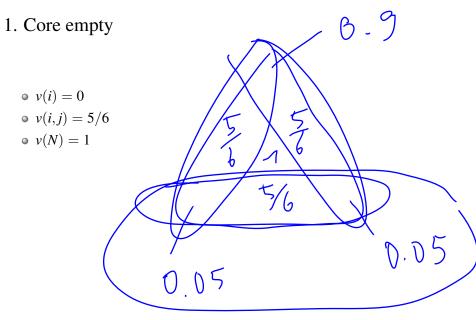
Bondareva 1963 and Shapley 1967

The Core of a cooperative game is *nonempty* if and only if the game is *balanced*.

Balancedness:

- Balancing weight: Let $\alpha(C) \in [0, 1]$ be the balancing weight attached to any $C \in 2^N$
- Balanced family: A set of balancing weights α is a balanced family if, for every $i_{\lambda} \sum_{C \in 2^{N}: i \in C} \alpha(C) = 1$
- Balancedness in a superadditive game then requires that, for all balanced families, $v(N) \ge \sum_{C \in 2^N} \alpha(C)v(C)$

Limitations of the Core

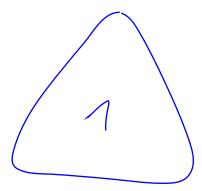


2. Core non-empty but very inequitable (1, 0, 0)

•
$$v(i) = v(2,3) = 0$$

• $v(N) = v(1,2) = v(1,3) = 1$

3. Core large (any split of 1)



So is the Core a *descriptive* or a *prescriptive/normative* solution concept?

What about an explicitly normative solution concept?

Lloyd Shapley (1923-2016)

Shapley value (Shapley 195

Axioms. Given some G(v, N), an acceptable allocation/value $x^*(v)$ should satisfy

- Efficiency. $\sum_{i \in N} x_i^*(v) = v(N)$ Symmetry. if, for any two players *i* and *j*, $v(S \cup i) = v(S \cup j)$ for all *S* not including *i* and *j*, then $x_i^*(v) = x_j^*(v)$
- **Dummy player.** if, for any $i, v(S \cup i) = v(S)$ for all S not including i, then $r^*(v) = 0$ then $x_i^*(v) = 0$
- Additivity. If u and v are two characteristic functions, then $x^*(v+u) = x^*(v) + x^*(u)$

Shapley's characterization

The unique function satisfying all four axioms for the set of all games is

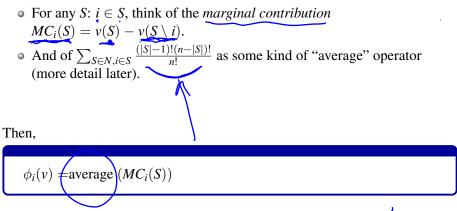
$$\phi_i(v) = \sum_{S \in N, i \in S} \frac{(|S|-1)!(n-|S|)!}{n!} [v(S) - v(S \setminus \{i\})]$$

1

So what does this function mean?

Shapley value

The Shapley value pays each player his average marginal contributions:



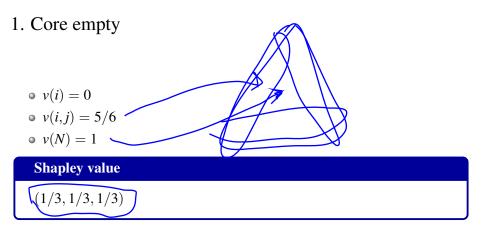
An alternative characterization

Young (1985): a set of equivalent axioms is

• Efficiency.
$$\sum_{i \in N} x_i^*(v) = v(N)$$

- **Symmetry**. if, for any two players *i* and *j*, $v(S \cup i) = v(S \cup j)$ for all *S* not including *i* and *j*, then $x_i^*(v) = x_j^*(v)$
- **Monotonicity**. If u and v are two characteristic functions and, for all *S* including *i*, $u(S) \ge v(S)$, then $x_i^*(u) \ge x^*(v)$

A more attractive set of axioms...



2. Core non-empty but very inequitable (1, 0, 0)
v(i) = v(2,3) = 0
v(N) = v(1,2) = v(1,3) = 1

Shapley value

(4/6, 1/6, 1/6)

3. Core large (any split of 1)

Shapley value

 $\left(1/3,1/3,1/3\right)$

Room-entering story (Roth 1983)

Average MC in this sense...

• $N = \{1, 2, ..., n\}$ players enter a room in some order.

Cooperative Game Theory

- Whenever a player enters a room, and players S \ i are already there, he is paid his marginal contribution MC_i(S) = v(S) − v(S \ i).
- Suppose all *n*! orders are equally likely.
- Then there are (s 1)! different orders in which these players in $S \setminus i$ can precede i
- and (n s)! order in which the others may follow
- hence, a total of (s-1)!(n-s)! orders for that case of the n! total orders.

Ex ante, the payoff of a players is $\sum_{S \in N, i \in S} \frac{(s-1)!(n-s)!}{n!} MC_i(S)$ – the Shapley value.

Relationship between the Core and the Shapley value

Put simply, none...

- the Shapley value is normative
- the Core is something else (hybrid)
- when the Core is non-empty, the SV may lie inside or not
- when the Core is empty, the SV is still uniquely determined

Other cooperative models

Non-transferable-utility cooperative game

- As before: CFG defined by 2-tuple G(v, N)
- **Outcome**: *partition* $\rho = \{C_1, C_2, ..., C_k\}$ *directly* (w/o negotiating how to share) implies a payoff allocation/imputation $\phi_i = f_i(C_i)$
- There are no side-payments and the worth of a coalition cannot be (re-)distributed.

Agents have preferences over coalitions.

Stable Marriage/Matching problem

2-sided market

- Men $M = \{m_1, ..., m_n\}$ on one side, women $W = \{w_1, ..., w_n\}$ on the other.
- Each m_i : preferences (e.g. $w_1 \succ w_2 \succ ... \succ w_n$) over women
- Each w_i : preferences (e.g. $m_n \succ m_1 \succ ... \succ m_{n-1}$) over men

THANKS EVERYBODY and keep checking the website for new materials as we progress! http://gametheory.online