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Social distancing is an effective strategy to mitigate the impact of infectious diseases. If either sick or healthy individuals, or both, socially
distance, the epidemic curve flattens. Substantial amounts of contact reductions occur endogenously during a disease outbreak: Some are
due to health-related mobility loss (severity of symptoms), duty of care for an infected person in the same household, and forced quarantine.
Other changes are due to voluntary social distancing. In particular, sick people reduce contacts to avoid infecting others, and healthy
individuals do so in order to stay healthy. We use game theory to formalize the interaction involving voluntary social distancing in a partially
infected population. This improves the behavioral micro-foundations of epidemiological models and predicts differential social distancing
dependent on health status. The model’s key predictions in terms of comparative statics are derived, which concern changes and interactions
of endogenous differential social distancing behaviors. We fit the relevant parameters for endogenous social distancing in an epidemiological
model with evidence from influenza waves and the current COVID-19 pandemic, and use these fits to provide a benchmark for an epidemic
curve with endogenous social distancing. Our results suggest that a curve similar in peak and case numbers to what resulted from a
lockdown, yet quicker to pass, could have occurred endogenously. Going forward, eventual social distancing orders and policies should be
benchmarked against more realistic curves that take endogenous social distancing into account, rather than be driven by unrealistic horror
scenarios that are based on static estimates for social mixing.
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The contact rates of infectious and non-infectious agents play a key role in determining the epidemic1

curve. For example, when individuals infected with the SARS-CoV-2 virus have limited contact with2

susceptible individuals because of rapid case-isolation policies, transmission can be reduced effectively (1).3

How effective less stringently enforced policies and recommendations of social distancing or isolation are4

depends in general on the individual-level decisions regarding whether or not to adhere to social distancing5

voluntarily and/or in response to social distancing policies.6

Governments seem to disagree strongly regarding how much freedom of choice their citizens are ideally7

entrusted with in order to achieve social distancing, resulting in less (e.g. Sweden) and more (e.g. China)8

stringent policies. To identify adequate policy responses, it is important to understand behavioral change9

in epidemiological models (see reviews by (2–4)). However, the interactive nature of the behavioural10

change in social distancing during infectious disease outbreaks (in contrast to the contexts of decisions for11

vaccination (5–7) and antiviral prophylaxis (8)) have not been explored in much detail, in particular not12

regarding the individual-level game-theoretic foundations of social distancing, and how these compare with13

real-world evidence. Progress in this direction ought to be made, because game-theoretic analyses have14

shown that interactions can crucially shape the epidemic curve (9–11), and modeling increasingly rests on15

rich assumptions regarding how individual behavior changes dynamically with the disease outbreak.16

In the context of policy-relevant COVID-19 modelling, some assumptions made regarding behavioral17

change had to be made without adequate empirical foundations. The early simulations “driving the world’s18

response to COVID-19” (12), for example, were based on static estimates of social mixing. These simulations19

painted horrific scenarios in terms peak and case numbers of the outbreak, which led to the introduction of20

social distancing policies across (most of) the globe. To evaluate which policies should be used, modelers21

again made assumptions regarding how social distancing policies would be adopted in terms of reductions22

of the population—as this example on how a population would respond to a recommendation of voluntary23

home quarantine from (13) illustrates: “Following identification of a symptomatic case in the household, all24

household members remain at home for 14 days. Household contact rates double during this quarantine25
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period, contacts in the community reduce by 75%. Assume 50% of household comply with the policy.”.26

What numbers are chosen precisely is important to justify policies, yet it is unclear what these particular27

ones were based on—theory, evidence or introspection. What is clear is that understanding the exact nature28

of individual-level incentives and responses underlying decision-making better is important as it helps29

to elucidate when and whether there are conflicts of interest between individual and collective interests30

(5), or not (14). This is an important factor when governments choose between health and mobility31

recommendations and forced quarantine and lockdown measures. Hence modeling must move from making32

mobility assumptions to theoretically and empirically validated mobility ingredients. Here, making such a33

step toward establishing a suitable framework for integrating behavioral micro-foundations of mobility, we34

draw on game theory to embed interactive decision-making of social distancing in an epidemiological model.35

Recently, many countries enforced strict restrictions on movements and social interactions, because the36

general impression was that voluntary social distancing recommendations would not be sufficient (15).37

Quite plausibly, due to the large economic and social impact of country-wide lockdowns, governments38

increasingly consider restricting human movements and social contact dependent on health and risk status39

so as not to lock down the entire population (16). The issue is that research has not yet provided empirical40

benchmarks for differential mobility in disease scenarios, so it is unclear how such policies can be evaluated:41

Any policies aimed at reducing mobility should be benchmarked against what mobility would have been42

without such policies in light of the disease, not against what mobility was like before the disease. We here43

propose a game-theoretic model of social distancing behavior in order to provide avenues for formulating44

such benchmarks, and compare its predictions to observations of contact rates during two influenza seasons45

in the United Kingdom where human contact was not affected by specific government restrictions. The46

observed restrictions might be viewed as lower bounds on the counterfactual endogenous levels of social47

distancing that ought to be expected in the current COVID-19 situation if no explicit policies had been48

imposed. We show that levels of endogenous social distancing as would be expected from an influenza49

season would already flatten the epidemic curve substantially, and that social distancing orders would really50

have to be quite effective to warrant their introduction given such counterfactuals.51

Modelling infectious disease dynamics52

The close monitoring and detailed modeling of outbreaks of infectious diseases has become an increasingly53

active research focus in epidemiology since the seminal works by (17–19) and (20, 21). Over the past54

decades, the emergent body of epidemiological research has substantially improved our understanding of55

the dynamics of infectious diseases as well as how to control and prevent them (e.g. vaccination, quarantine,56

social distancing policies, etc. (22–24)), which together with the increasing availability of relevant data has57

Significance Statement

Infectious disease transmission in human populations crucially depends on contact patterns during outbreaks:
Who makes which contacts when? An underappreciated element of contact behaviors is their interactive
nature, and the cost-benefit analyses driving them. Endogenizing interactive cost-benefit analyses that factor
in both infection risk and health status crucially changes predictions for the epidemic curve in ways that
state-of-the-art epidemiological modeling does not capture. We look at data and find empirical evidence for
health status dependent social distancing, as well as for other behaviors predicted by our theory. We run
empirically informed simulations based on our model, and show that levels of curve flattening ought to be
expected that match rather draconic lockdown policies, but they are endogenous and not imposed.
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allowed to apply some of these models to real-world epidemics.58

One key modeling aspect concerns the transmission of infectious pathogens via individual contacts59

between infectious and susceptible individuals (25, 26), which have been shown to differ dependent on60

demographic factors such as age and sex (27–29). While a lot of previous work focuses on reconstructing61

the transmission trees of observed epidemics (30), or on their final size and geographic spread (31, 32), less62

attention has been paid to the role that individual decision-making regarding social distancing –weighing63

the risks of infecting and being infected– plays in shaping behavioral contact patterns that underlie these64

dynamics.65

Mobility or, more generally, contact-seeking/avoiding decisions are key drivers of disease dynamics.66

Descriptive analyses of individual human mobility have revealed remarkable consistency at multiple67

temporal and spatial scales in the absence of exogenous factors (33–37), but also revealed that contact68

patterns change as a result of disease severity (38). One roadblock for making progress has been that contact69

and movement data are typically collected independently of health status.∗ While this is currently changing70

with emerging health-tracking applications, there is no robust data that has been made available as of now.71

As a consequence, there is little empirical evidence on how human contact rates change depending on health72

status and as a function of disease incidence overall –often due to the lack of available real-time contact73

information (40).† Precisely this kind of insight, however, would be important to advance the understanding74

of the interactive nature of contact rate decisions, because the incentives to practice social distancing or not75

are different for healthy and for sick people. To improve predictions concerning the dynamics of diseases at76

the population level (43), and to understand what kinds of policies are actually appropriate, uncovering the77

behavioral determinants of contact patterns is therefore an important next step as applied work until now78

has to work largely by making crude assumptions, which may be sensitive, especially during the key (early)79

periods of an epidemic.80

A rational-choice foundation of individual contact-seeking/avoiding behaviour in response to an infectious81

disease in epidemiological models is a framework proposed by (44). The result is a model where the contact82

rates of the resulting epidemiological model are no longer exogenous variables, but instead are determined83

co-evolutionarily with the dynamics of the disease itself. (44)’s framework presents an individual risk84

assessment, presuming that individuals’ propensities to stay home (more social distancing) increase with85

intensity and awareness of the disease due to the increased risks for contracting the disease. The simulations86

presented in (44) show that incorporating this type of individual decision-making changes predictions87

concerning the epidemic curve: (much) flatter curves are the result, particularly if sick individuals also88

reduce their contacts.89

The decision-theoretic framework by (44) is a primer toward integrating human behavior into disease90

modeling, especially as regards understanding the role of infection fear in shaping contact patterns. To91

improve the behavioral micro-foundations of disease modeling, the aim of which is to better predict epidemic92

dynamics and to deliver more effective intervention policies, we generalize the existing decision-theoretic93

framework in two ways. First, the contact-reduction results are checked against some data on contact94

patterns during the 2012 and 2013 flu epidemics in the United Kingdom. Second, going beyond the95

single-player decision-theoretic approach, which does not account for the interactive nature of contact96

decisions, the underlying theoretical framework is extended to a game-theoretic model. By using game97

theory we can model not just the trajectory of the disease as a function of the underlying contact data,98

but more generally endogenize contact patterns by an interactive decision model and as determined by99

the dynamics of the disease (e.g., incidence rates). The framework proposed improves the rational-choice100

foundations of epidemiological models towards an integrated co-evolutionary view on contact rates and101

disease dynamics, which may substantially advance its predictive potential.102

The core argument of this paper is that the kinds of risk assessments underlying contact decisions are103

interactive, which we model using game theory by formulating what we shall call “the social distancing104

∗
See (39) for one of the first studies to do so via a telephone survey conducted during an influenza season.

†
Some related empirical work has been done to capture the change in human movements in response to environmental disaster (41), and travel restrictions (42), but not in response to disease outbreaks
except for some recent work we shall discuss separately in the concluding remarks.
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game". The model permits us to produce testable individual-level comparative statics regarding how105

individuals will react during the outbreak of a disease and in response to others’ contact patterns (checking106

against data from two influenza seasons in the UK for some empirics). Looking forward, the advantage107

of our game-theoretic modeling approach is that it becomes feasible to identify tipping points in the108

underlying dynamics,‡ whose transitions may be explosive and differ fundamentally for marginally different109

starting conditions as compared to those predicted by a non-game-theoretic model (47). The next level of110

epidemic modeling should therefore consider game-theoretic modelling so as to leverage possible dynamics111

of equilibrium transitions to policy advantage, as is argued in policy making related to social dynamics112

(48, 49).113

Indeed, there have been two very recent concurrent papers making progress in this direction, and future114

work could merge our lines of analyses with theirs. The first is by (50) who considers a theoretical model115

with endogenous contact rates where the two types of agents, sick (and infectious but not yet symptomatic)116

and healthy, who choose contact rates are in the same information set. Infected individuals stay at home117

with probability one. Their model generates the same contact rates for both types, and does not make118

predictions regarding interaction effects of the two. Our data indicates that health status leads to different119

contact patterns, and that symptomatic individuals also vary contact rates as a function of incidence. This120

is also an important feature of our simulations. A very nice feature of their model is an explicit treatment121

of the path dependency of equilibrium, which would be nice to extend to a framework like ours too in122

future work. The second paper is a related theoretical framework by (51) who do not consider endogenous123

contact reductions by infected individuals at all because they have no private benefit from it. In that sense124

their model is more similar to (44) than ours, but adds a Nash equilibrium analysis to it. Again, our data125

indicates that infected and infectious individuals do also reduce contact rates with incidence levels, and126

that there are interactions between contact rates of sick and healthy individuals. Pro-social concerns for127

the health of others, not just concerns for one’s own health, clearly play a very important role.128

In sum, the ambition of this paper is to integrate behavioral responses from a game-theoretic framework129

into classical epidemiological models that accounts for health status and includes self-protective and pro-130

social concerns. By doing so, we propose a new model, spell out its behavioral predictions, in particular131

regarding differential rates of social distancing. We compare theoretical results with empirical observations132

from the 2012 and 2013 influenza epidemic in the United Kingdom, and discuss implications for policy133

recommendations in light of the simulated epidemic curves our model generates. We compare the endogenous134

curve with curves that would result from interventions such as immobilizing fractions of the population.135

Methods136

Contact rates.The key ingredients, implicitly behavioral ones, that determine the dynamics of epidemiolog-137

ical models are so-called ‘contact rates’ which govern the frequency and likelihood of human interactions138

and therefore transmissions: Where do you go? Who do you see? How do you make contact? At the139

individual level, a change in contact rates may occur for symptom-specific medical reasons after contracting140

a disease that leads to reduced mobility for example. Moreover, a person, whether infected or not, may141

consciously decide to social distance, that is, to reduce contacts in light of various evolving risks (i.e. of142

spreading the disease and/or of contracting the disease) during an outbreak.§143

To understand the implications of these endogenous phenomena, we need a model for how and why144

behavioral change occurs during outbreaks of infectious diseases. To do so, we extend the existing145

decision-theoretic model of (44) to allow for interactive decisions and strategic considerations as the risks of146

contracting and transmitting a disease depend on one’s own contact patterns as well as on everyone else’s147

levels of social distancing. Therefore, we model the individual decision as dependent on others’ decisions,148

and we identify the rational-choice predictions for these decisions. By combining the human perspective149

on decision-making including considerations of risks and interactions in this way –using game theory– we150

‡
See, for example, (45, 46).

§
We referred to social distancing as self-quarantine in earlier versions of the paper, but adopt this jargon in line with (44) as is becoming standard.
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obtain new and testable predictions for how human contact patterns and mobility decisions interact.151

To illustrate the interactive nature of the proposed problem, consider the following thought experiments152

at the two extremes of the logical spectrum. At one extreme, suppose that everyone (sick and healthy alike)153

stays home, i.e. has reduced their contacts to zero (extreme social distancing). In that case, of course, any154

given individual (think of Will Smith in “I Am Legend" to lighten the mood) can move freely without fear155

of infection (if healthy) or of infecting others (if sick). Thus, in game-theoretic language, this does not156

constitute a Nash equilibrium, because every individual prefers to deviate (from staying at home), given157

the decision of everyone else (to stay at home). At the other extreme, by contrast, when everyone (sick and158

healthy) is moving around all the time resulting in very high contact rates (no social distancing), it is safest159

to stay home in order to not become infected (if healthy) or not to infect others (if sick). Again, everyone160

moving freely around will not constitute an equilibrium.161

Social distancing in a population. In this section, we propose a formal model that will highlight the main162

advantages of choosing a game-theoretic rather than mechanistic approaches (as is done in applied work),163

and spell out how it goes beyond a single-player decision-theoretic model.164

Population. Consider a human population N = {1, 2, ..., n}. Each person i ∈ N either belongs to the set165

H ⊂ N , the healthy (or non-symptomatic, susceptible, uninfected, etc.), or to the other set S = N \H, the166

sick (or symptomatic, non-susceptible, infected, etc.).¶167

Social-distancing decisions. Each i ∈ N chooses a contact rate βi ∈ [0, 1]. Write β for the full vector of168

contact rates, βH for the average contact rate of healthy agents, and βS for the average contact rate of sick169

agents.170

Utilities. Individual utility is generated by reaching places (or people) which is facilitated by being171

mobile. Hence, positive mobility is required to generate utility. But increased levels of mobility are also172

increasingly costly as they increase the exposure to infection risks for self and others. Hence, both complete173

immobility and full mobility generate no utility. Once there are risks of infection due to the presence of a174

disease, this mobility will be reduced to mitigate these risks.175

Let us consider two scenarios distinguished by whether i.) everyone is healthy, or ii.) there are infected176

individuals.177

i.) No-disease scenario. Suppose there is no disease, that is, |S| = 0. In that case, we assume utility for178

any player i is described by a twice-differentiable, continuous utility function179

Base utility. ui(β) = u(βi) [1]180

such that u(0) = u(1) = 0, u(β) > 0 for all β ∈ (0, 1), u′(β) > 0 (< 0) for β < β∗ (> β∗) given some181

β∗ ∈ (0, 1), and u′′(β) < 0. These assumptions ensure that β∗ represents the unique utility-maximizing182

level of mobility in the no-disease scenario. We shall refer to levels chosen below β∗ as ‘social distancing’.183

Of course, the optimal level will be heterogeneous within a population, but we abstract from this level of184

detail for the moment.‖185

ii.) Disease scenario. Once some individuals are infected, that is, if |S| > 0, then the ‘base utility’ u(βi)186

that corresponds to a healthy individual, for an infected individual, is reduced directly by some disease187

factor δ (with δ ∈ [0, 1] representing a proportional disutility from being sick) resulting in ‘sick utility’188

δu(βi). Moreover, depending on health status, all individuals suffer additional disutility from the risk of189

becoming infected (for healthy), or from the risk of infecting others (for sick), both of which increase with190

mobility, thus adding further costs to being mobile. Hence, for a healthy individual, i ∈ H the utility is191

Healthy H-utility. ui(β) = [2]192

(1− f · (1− [(1− βi
S)n−|H| · βi + 1− βi]︸ ︷︷ ︸
infection risk

)) · u(βi)︸ ︷︷ ︸
base utility

193

¶
Here, we work with a basic epidemic model setting without recovery in mind, which naturally ought to be generalized in future work.

‖
Recent empirical work by (36, 49) identifies heterogeneous levels of mobility in the absence of a disease.
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where f ∈ [0, 1] measures the fear of a healthy individual of getting infected, which would also express how194

severe the disease is. Similarly, for a sick individual, i ∈ S, the utility is195

Sick S-utility. ui(β) = [3]196

(1− c · (1− [(1− βi
H)|H| · βi + 1− βi]︸ ︷︷ ︸

spreading risk

)) · δu(βi)︸ ︷︷ ︸
sick utility

197

where c ∈ [0, 1] measures the pro-social concern an infected individual has for another individual’s life,198

that is, the expected reduction in utility from exposing other healthy humans to the risk of infection,199

which would naturally increase with the severity of the disease too. Note that the introduction of this200

parameter expressing this type of motivation, which is central to most policies aimed at reducing mobility of201

symptomatic humans, is absent in (44), but will generate the kinds of mobility reductions that characterize202

several of his simulations resulting in the flattest epidemic curves.203

The underlying contact scenario we thus express is one where βi represents agent i’s probability of204

exposing him/herself to an infection-risk encounter, and 1-(1-βi
S)n-|H| and 1-(1-βi

H)|H| respectively represent205

the probabilities of at least one infected / susceptible making the same encounter. Thus we model the206

probability of two parties meeting at a given location, or all parties spending some time at a central207

locations. W.l.o.g., when two individuals with different health status enter the location, we assume an208

infection takes place with probability one.209

Results.What interests us are the comparative statics of rational-choice contact rates in equilibrium when210

mobility rates are chosen optimally so as to maximize subjective expected utilities. These we identify by211

inspection of the conditions for optimal behavior for the two utility functions given by Equations 3 and 2,212

which we obtain by maximizing both expressions with respect to βi, yielding the two first-order conditions213

(FOCs):214

H-FOC.
marginal utility effect︷ ︸︸ ︷

(1 − f · (1 − [(1 − βiS)n−|H| · βi + 1 − βi]))u′(βi) [4]215

= f · (1 − (1 − βiS)n−|H|)u(βi)︸ ︷︷ ︸
marginal infection risk effect

216

S-FOC.
marginal utility effect︷ ︸︸ ︷

(1 − c · (1 − [(1 − βiH)|H| · βi + 1 − βi]))u′(βi) [5]217

= c · (1 − (1 − βiH)|H|)u(βi)︸ ︷︷ ︸
marginal spreading risk effect

218

Note that both right-hand sides of the latter equations are positive, indicating that both marginal utilities219

u′(βi)s must also be positive; i.e. that we now must obtain lower contact rates for both sick and healthy220

individuals (compared with the utility-maximizing level of mobility β∗ from the no-disease scenario) in221

order for FOCs to be satisfied than in the no-disease benchmark. This means that both sick and health222

individuals will engage in some optimal level of ‘social distancing’, that is, choosing a lower equilibrium223

utility than β∗ from the no-disease scenario.224

Comparative statics. From inspection of above two FOCs, we obtain the comparative statics summarized225

in Table 1.∗∗
226

227

Naturally, the optimal contact rates for healthy and sick are different and take intermediate values, the228

exact value depending on factors related to disease incidence, fear, concern, disease severity, risks, etc. Note229

∗∗
Comparative statics describe how the optimal contact rate varies with the various other parameters. Here, these are evaluated under the assumption that a symmetric Nash equilibrium exists such that,
in equilibrium, βi = βH for all healthy and βi = βS for all sick.
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Table 1. Comparative statics of the equilibrium analysis.

A marginal increase in ... ... leads to ...

social distancing of Healthy less social distancing of Sick.
social distancing of Sick less social distancing of Healthy.
size of the Healthy population more social distancing of Sick.!
size of the Sick population more social distancing of Healthy.!
pro-social concern of the Sick more social distancing of Sick.
fear of disease of the Healthy more social distancing of Healthy.∗

∗: Present in the model by (44). The other effects are new.
!: Contrary to imitation, herding, etc. as proposed, for example, in (10, 52).

Sick
seek contacts stay home

Healthy seek contacts

stay home

Fig. 1. The social distancing interactions simplified.

that individuals may also differ in their fears, concerns, etc., hence we can think of the comparative statics230

in Table 1 also as organizing individual heterogeneity. While this is a two-population evolutionary game231

with continuous action space for every player, the strategic essence of this interaction can be represented232

by a simplified game played between Sick and Healthy as is illustrated in Fig. 1. Both health types seek233

contact leads to infection. Both staying home leads to no infection, but also generates zero utility for234

anyone. The two mixed outcomes, where only one party stays home, also do not lead to infection, and have235

the advantage that the population that continues to be mobile generates positive utilities.†† As governments236

aim to return to higher levels of economic and social activities, such an outcome, with the sick rather than237

the healthy doing most of the staying at home, will likely become the goal.238

Concluding remarks239

Fig. 2. Left: The color map encodes the fraction of infected individuals in dependence on time and the average contact rate. The upper panel shows characteristic cross-
sections of the color map, where it can be observed that the endogenous contact reduction effect is matched no sooner than at 60-70% reduction of the contact rate (average
mobility). Right: The color map encodes the fraction of infected individuals in dependence on time and the fraction of immobilized individuals. The upper panel shows
characteristic cross-sections of the color map, where it can be observed that the endogenous contact reduction effect is matched no sooner than at 40-50% immobilization.
Results were obtained by averaging outcomes over 1.5 million nodes in network configurations that are representative for real social networks. See Appendix C for details.

Here, we have developed a rational-choice framework for differential (health-dependent) levels of social240

††
Similarly, if the elderly are particularly at risk, either the young or the elderly, or both, should perhaps avoid contacts with one another to avoid infections.

Funk et al.  | May 9, 2020 | vol. XXX | no. XX | 7
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distancing that includes interactive incentives related to risks of infection. A major issue regarding health-241

dependent analyses of contact rates in general, and to test the kinds of predictions that our model generates242

in particular, is data availability. To date, very little data is available that records contact rates and health243

status at the same time. This is hopefully going to change as health-tracking applications are becoming244

increasingly popular during the ongoing COVID-19 pandemic. Early work indicates that human contacts245

have reduced markedly in China (53), and that contact rates are crucially important for disease transmission246

as countries move to lift the lockdowns (16). However, many obstacles remain, especially considering the247

adherence to recommended behaviours in different societies. We simulated different interpretations of social248

distancing policies in Fig. 2, highlighting what kinds of epidemic curves ought to be expected from either249

reducing mobility of everyone in the population or from immobilizing a certain fraction.250
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Fig. 3. Top left: Social distancing for sick and healthy. Median number of contacts in any different weeks as a function of incidence of ILI symptoms among Flusurvey
participants in that particular week. The lines show linear fits, and shades 95% confidence intervals. Slopes: healthy -70 (95% CI: -120–(-20)), ill -110 (95 %CI: -220, 10);
p-value testing null hypothesis of slope 0: healthy 0.01, ill 0.07. Top right: No negative correlation between social distancing rates. Median number of contacts in participants
with ILI symptoms as a function of the median number of contacts in participants without ILI symptoms. The lines shows a linear fit, and shades 95% confidence intervals.
Slope: 0.9 (95% CI: 0.2-1.6); p-value testing null hypothesis of slope 0: 0.02. Bottom: Comparison of the infected curve, as obtained with unrestrained mobility (black) and
endogenous contact reduction based on the Flusurvey data (black). The inset shows how fast the contact rate decreases as the fraction of infected individuals peaks, and
then increases comparatively slowly as the incidence of infections decreases. Dashed and dotted lines were obtained with three-fold reductions at 5% and 15%, respectively,
as the lower and upper bound on the error from the data (which suggest a three-fold decrease at about 10%).

As a step towards some empirical foundations, we considered Flusurvey data from the United Kingdom251

(see Fig. 3, and Appendix for details), where we found evidence of social distancing amongst healthy252

individuals as a function of disease incidences in their neighborhoods, as was predicted by our model and253

by earlier work.‡‡ The baseline levels of mobility in the UK as recorded per Flusurvey (resulting in medians254

of circa 12 to 14 contacts per week outside the flu season) are in line with prior estimates from other255

countries than the UK (39, 54). Indeed, we found that, even in the context of seasonal influenza, some256

sizeable degree of social distancing took place amongst both sick (mobility reduction of ca. 50-55%) and257

healthy individuals (mobility reduction of ca. 30-35%), fitting closely phenomena of endogenous social258

distancing at the population level in other countries (55). Predicted negative correlations between the levels259

of the two health types were rejected, suggesting presence of behavioral elements beyond individual utility260

maximization such as social influence, norms, imitation, herding, etc.261

The influenza comparison is useful, as seasonal influenza viruses tend to cause less mortal diseases than262

SARS-COV-2, so any endogenous mobility reductions observed for an influenza according to our model263

would provide lower bounds on the reductions that we would expect in the current situation (without policy)264

of a more serious pandemic. In Sweden, for example, where the government decided against the kinds of265

lockdowns that other European countries implemented, the aggregate population mobility in transit and266

‡‡
Note we pre-registered this type of analysis even though we did not know what kind of data would be available exactly at https://osf.io/zc5b8 and https://osf.io/q3m2p.
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workplace decreased by 31% and 11% respectively (as per Google’s COVID-19 Community Mobility Report267

Sweden). This is comparable to the decrease we recorded in the Flusurvey. Our simulations in Fig. 3268

which use the fit for contact reductions as observed in Flusurvey and extrapolate further reductions in269

case of incidence levels beyond those observed in Flusurvey indicate that with these kinds of endogenous270

mobility reductions (as are estimated from real-world behavior in Fig. 3) the epidemic curve would have271

flattened to levels that are comparable in terms of height of the peak and total case numbers as would have272

been obtained from immobilizing 40-50% of the total population or bringing the average mobility down by273

60-70%. These are candidate benchmarks we should be evaluating policy success against.274

We are hopeful that future research and applied modeling will make use of game-theoretic modeling to275

endogenize contact rates in line with a modeling framework we proposed. Further, we encourage future276

efforts to test our model’s hypotheses with more data, as there are potential confounding factors in our277

data related to the seasonality of contacts because of factors unrelated to disease (especially temperature,278

but also school holidays etc.), which we cannot account for sufficiently due to data availability. Such279

analyses are important, as policymakers will likely move to new, perhaps health-status dependent, mobility280

restrictions and relaxations thereof. Ideally, to evaluate the effectiveness of policies aimed at increasing281

social distancing there ought to be at least some benchmarking concerning what levels might be expected282

endogenously during the pandemic, as well as monitoring of individual behaviours in response to changes283

in government recommendations or restrictions. In particular, the UK COVID-19 lockdown is currently284

estimated to reduce contacts by 75% (56), which is roughly double the reduction we recorded for healthy285

individuals for the 2012 and 2013 influenza seasons (see Fig. 3), but not substantially above the levels our286

simulations indicated would justify such policies (see Fig. 2). This work suggests scope for future studies287

in this directions and provides some first measurements.288

Governments should factor in endogenous social distancing when weighing the pros and cons of policies289

as diverse as those ranging from China to Sweden. Epidemic modeling could improve its behavioral290

micro-foundations more generally.291

Materials and Methods292

293

Influenza season contact data. Data for Fig. 3 comes from the UK Flusurvey (www.flusurvey.org.uk), an internet294

platform launched in 2009 to augment existing influenza surveillance (57, 58). The data underlying our analyses is295

available upon request from S.F.. Its focus is on recording healthcare usage by individuals with influenza-like-illness296

(ILI) symptoms (59, 60). During an influenza season, participants receive a weekly reminder to report presence or297

absence of ILI-related symptoms. When reported, followup questions are asked regarding health-care seeking and298

other behaviors. Flusurvey data has previously been used to estimate incidence trends (61), to identify risk factors299

(62), to estimate the effectiveness of vaccination (63), and to quantify health-care seeking behavior (64).300

During the four influenza seasons 2009–13, social contact data were also collected, some of which is analyzed here.301

Participants were asked to report conversational and physical contacts by age group in three types of setting (home,302

work/school and other), as previously used to model H1N1v influenza (65). Here, we use the total of conversational303

contacts reported as a proxy for overall contacts, and assessed whether the date at which the contacts were submitted304

were within the start and end dates of an episode of illness with ILI symptoms (one general symptom out of fever,305

tiredness, weakness and headache, and one respiratory symptom out of sore throat, cough and shortness of breath).306

The end date of an episode was considered to be a healthy date. We cleaned the data in the following ways. We307

removed bad symptom dates (end date before start date, dates after the date at which a response was submitted) in 85308

out of 8800 symptom reports. We further removed all participants with fewer than three symptom reports (whether309

reporting healthy or ill), and removed the first submitted survey report of every participant in order to remove any310

potential bias from participants signing up only because they were researching influenza-related information. Where311

the end date of an episode was not reported, the date of the report which stated that the illness had ended was taken312

as the end date of the episode. Incidence was calculated as number of episodes of illness with ILI symptoms starting313

in any particular week divided by the number participants submitting a report in that week.314

Data presented here are based on results from the UK flusurvey (www.flusurvey.org.uk), which was launched in315

2009 as a platform for an internet-based cohort to augment existing influenza surveillance (57, 58), most of which316
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depends on recording healthcare usage by symptomatic individuals (59, 60) and therefore misses individuals with317

influenza-like-illness (ILI) who do not seek medical attention. During the influenza season, every participants receives318

a weekly reminder via email, asking to report presence or absence of ILI-related symptoms. If such symptoms are319

reported, a number of followup questions are asked regarding health-care seeking and other behaviour. See Figure 4320

for the key questions of the Flusurvey relevant for this study.321

As well as estimating incidence trends (61), flusurvey data have been used to identify risk factors to ILI (62), to322

estimate the effectiveness of influenza vaccination (63) and to quantify health-care seeking behaviour (64). During323

the four influenza seasons 2009–13, social contact data were collected in addition to the ILI-related data. Participants324

were asked to report conversational and physical contacts by age group in three types of setting (home, work/school325

and other). These data have previously been used to explain the spread of H1N1v influenza (65).326

We used the total of conversational contacts reported as measure of overall contact, and assessed whether the date327

at which the contacts were submitted were within the start end end date of an episode of illness with ILI symptoms328

(one general symptom out of fever, tiredness, weakness and headache, and one respiratory symptom out of sore throat,329

cough and shortness of breath). The end date of an episode was considered to be a healthy date.330

We cleaned the data in the following ways: We removed bad symptom dates (end date before start date, dates after331

the date at which a response was submitted) in 85 out of 8800 symptom reports. We further removed all participants332

with fewer than three symptom reports (whether reporting healthy or ill), and removed the first submitted survey333

report of every participant in order to remove any potential bias from participants signing up only because they were334

researching influenza-related information. Where the end date of an episode was not reported, the date of the report335

which stated that the illness had ended was taken as the end date of the episode.336

Incidence was calculated as number of episodes of illness with ILI symptoms starting in any particular week divided337

by the number participants submitting a report in that week.338

Simulation details. We use random geometric graphs in hyperbolic spaces to generate networks that have heterogeneous339

degree distributions, strong clustering, and short average path lengths, which are all inherent properties of real social340

networks (66, 67). By increasing the curvature ζ of the hyperbolic space, we move from networks having exponential341

to networks having scale-free degree distributions, and from longer to shorter average path lengths, and from weaker to342

stronger clustering. We thus cover the whole family of networks that are representative for real social networks (68).343

On top of these networks, we consider the susceptible-exposed-infectious-recovered (SEIR) model (69, 70), as344

recently declared suitable for describing the spreading of the COVID-19 disease (71). Initially, we select 0.2% of the345

nodes uniformly at random and designate them as infected (I). The remaining 99.8% of the nodes are designated as346

susceptible (S). Moreover, every node i is assigned a contact rate qi, where qi = 0 means the node is not exposed at347

all and thus has no way of becoming infected, while qi = 1 means the node is fully exposed to potentially become348

infected by all the other nodes to which it is connected. We note that qi can also be interpreted as social distancing349

or mobility, such that qi = 0 means that node i is not traveling to any of the other nodes to which it is connected and350

is thus fully isolated, while qi = 0.5 means there is only a 50% chance node i will travel to any of the other nodes to351

which it is connected. We consider the model without social distancing, such that qi = 1 for all nodes, as well as352

with uniform social distancing, such that we decrease qi below one for all nodes. We also consider random social353

distancing, such that a fraction p of nodes is selected at random and assigned qi = 0.1 instead of qi = 1, and with354

endogenous social distancing, where we fit the Flusurvey data to account for decreasing qi as the fraction of infected355

individuals ρ in the population increases. The function we use is qi = 3(−10ρ), which yields a three-fold decrease in qi356

at 10% of infected in the population.357

We perform Monte Carlo simulations of this SEIR model (72), which corresponds to a random sequential update,358

such that during a full Monte Carlo step (MCS) each node gets a chance once on average to become infected. Each359

full MCS consist of repeating the following elementary step n times. Firstly, select a node i uniformly at random360

from the whole network. Secondly, (i) If node i is in state S, choose one neighbor j uniformly at random and visit it361

with probability qi. If the neighbor is visited and is in state I, node i becomes infected with probability w = 0.7.362

If, however, the neighbor j is in states S or R nothing happens. (ii) If node i is in state I, then verify if at least363

tr = 15 full MCS have passed since it became infected. If yes, node i becomes recovered (R), and if no, node i remains364

infected. (iii) If node i is in state R, nothing happens.365

Derivations of comparative statics. We first rearrange H-FOC from Equation 2:366

(1-f · (1-[(1-βi
S)n-|H| · βi + 1-βi]))u′(βi) [6]367

= -f · ((1-βi
S)n-|H|-1)u(βi)368

⇐⇒ (1 + f · (-1 + [((1-βi
S)n-|H|-1) · βi + 1]))u′(βi)369

= -f · ((1-βi
S)n-|H|-1)u(βi)370
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We are interested in the partial derivative of Equation 7 along d/df , d/dc, d/dβS , and d/dβH . As the calculations371

for the former two and the latter two are very similar we only detail them for d/df and d/dβS . The other predictions372

also follow from similar arguments.373

Partial derivative of Equation 7 along d/df :374

(1 + f · (−1 + [((1− βi
S)n−|H| − 1) · βi + 1])) · u′′(βi) · β′i375

+ u′(βi)
[
− 1 + [((1− βi

S)n−|H| − 1) · βi + 1]
]

376

− u′(βi)f · [(1− βi
S)n−|H| − 1] · β′i377

= −((1− βi
S)n−|H| − 1) · (f · u′(βi) · β′i + u(βi))378

⇐⇒ β′i ·
[ >0︷ ︸︸ ︷

(1 + f · (−1 + [((1− βi
S)n−|H| − 1) · βi + 1])) ·

<0︷ ︸︸ ︷
u
′′(βi)379

−

=(∗)︷ ︸︸ ︷
u
′(βi) · f · [(1− βi

S)n−|H| − 1] +

=(∗)︷ ︸︸ ︷
u
′(βi) · f · ((1− βi

S)n−|H| − 1)
]

380

= −u′(βi)
[
− 1 + [((1− βi

S)n−|H| − 1) · βi + 1]
]

381

− ((1− βi
S)n−|H| − 1) · u(βi)382

⇐⇒ β′i ·
[ <0︷ ︸︸ ︷

(1 + f · (−1 + [((1− βi
S)n−|H| − 1) · βi + 1])) · u′′(βi)

]
383

=

>0︷ ︸︸ ︷
u
′(βi)

[
− 1 + [((1− βi

S)n−|H| − 1) · βi + 1]
]

384

+

>0︷ ︸︸ ︷
(1− (1− βi

S)n−|H|) · u(βi)385

⇒ β′i < 0386

387
Partial derivative of Equation 7 along d/dβS :388

(1 + f · (−1 + [((1− βi
S)n−|H| − 1) · βi + 1])) · u′′(βi) · β′i389

+ u′(βi) · f ·
[

((1− βi
S)n−|H| − 1)β′i − βi(1− βi

S)n−|H|−1
]

390

= −f · ((1− βi
S)n−|H| − 1) · u′(βi) · β′i391

+ f · (1− βi
S)n−|H|−1 · u(βi)392

⇐⇒ β′i ·
[ <0︷ ︸︸ ︷

(1 + f · (−1 + [((1− βi
S)n−|H| − 1) · βi + 1])) · u′′(βi)393

+

<0︷ ︸︸ ︷
u
′(βi) · f · ((1− βi

S)n−|H| − 1)394

+

<0︷ ︸︸ ︷
u
′(βi) · f · ((1− βi

S)n−|H| − 1)
]

395

=

>0︷ ︸︸ ︷
u
′(βi) · f · βi(1− βi

S)n−|H|−1396

+

>0︷ ︸︸ ︷
f · (1− βi

S)n−|H|−1 · u(βi)397

⇒ β′i < 0398

399

Supporting Information Appendix (SI).The data underlying the analyses of this article is available upon400

request from S.F..401
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Fig. 4. Key questions from the flu survey: the contact survey as seen by flusurvey participants.
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