BARGAINING

Heinrich H. Nax

Bary S. R. Pradelski

&

heinrich.nax@uzh.ch

bpradelski@cnrs.fr

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Plan for today

- Bargaining applications
- ② Cooperative bargaining solution
- ③ Noncooperative bargaining program
- ④ Experimental bargaining

Lecture logic

Topic

- Introduce bargaining
- Illustrations/ applications
- Bridge cooperative and noncooperative game theory (again...)

Appeal

- Bargaining is ubiquitous
- May be useful in real life
- Illustrates the idea of the "Nash program"

Examples of bargaining

Markets:

- Individuals (buyer/seller)
- Strategies (bid/ask certain prices)
- Outcome (profits/losses)

Splitting:

- Players (partners)
- Strategies (demands)
- Outcome (a split)

mirror.co.uk

jcrs.com

Bargaining in real-world markets

Bombay Stock Exchange

Stock market:

- Individuals (buyer/seller)
- Strategies (bid/ask certain prices)
- Outcome (profits/losses)

L'Inde Fantome (L. Malle 1969)

Bargaining over what?

Buyers/sellers and their willingness to pay/accept

Buyer $i \in B$ and seller $j \in S$ look for partners (|B| = |S| = N) – each seller owns exactly one good and each buyer wants exactly one good

- Buyer *i* is willing to pay at most $r_i^+(j) \in \delta \mathbb{N}$ for the product of seller *j*
- Seller *j* is willing to accept at least $r_j^-(i) \in \delta \mathbb{N}$ to sell his product to buyer *i*

where $\delta > 0$ is the minimum unit ('dollars')

 $\delta\mathbb{N}$ $r_i^+(j)$ $r_j^{-}(i)$ +

Bargaining over the match value

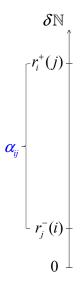
The match value for the pair (i, j) is

$$\boldsymbol{\alpha_{ij}} = (r_i^+(j) - r_j^-(i))_+$$

Let $\alpha = (\alpha_{ij})_{i \in F, j \in W}$

Normalization.

Let's normalize this value to the 'unit-pie' $\alpha_{ij} = 1$ for some (i, j).



Is there any economic activity more basic than two people dividing a pie?

The pie could symbolize the gains from trade in a market, the surplus generated within a firm, or the benefit from writing a joint paper on economics. Supposing that the nature of the split does not affect the pie's total size, this is a case in which distribution and efficiency is thought not to conflict. Surely, sensible people will come to some agreement rather than backing away from the transaction empty-handed. This argument has permeated economic thinking at least since Edgeworth [1881], and is sometimes referred to as neoclassical bargaining theory (see, e.g., Harsanyi [1987]).

from T. Ellingsen (1997): The Evolution of Bargaining Behavior.

The basic bargaining model

• Ingredients:

- Multiple parties/players
- A common gain/pie
- No central authority
- Bargaining ensues
- Some outcome is reached

From the analyst's point of view, how do we model this as a "game"?

Two approaches

• Cooperative:

- Multiple parties/players
- Coalitions form/contract is written
- Normative axioms are established
- Outcome is identified
- Outcome is implemented

- Noncooperative:
 - Multiple parties/players
 - Bargaining follows some rules
 - Players act strategically
 - Bargaining takes place
 - Outcome is implemented

Examples

• Cooperative:

- Twins share presents
- They have identical preferences
- Twins agree on a splitting rule
- Sharing fifty-fifty is the only fair rule accepted by both
- Presents are divided in equal halves
- Outcome is implemented

• Noncooperative:

- A buyer and a seller meet on the market
- They have different preferences
- Buyers make offers
- Sellers make counteroffers
- Both try to get the most out of the deal
- If an offer is accepted, they deal
- If not, no deal

Compare with our 'cooperative solutions' (Lecture 2)

• Shapley value:

- All players could agree on the axioms
- They could write an agreement that the SV is implemented
- Then the outcome would be implemented

• Core:

- When the SV lies inside the core, this seems stable
- However, as the SV may lie outside the core
- Or when the core is empty
- Then there would exist coalitions that perhaps would break the deal

The first formal model (Nash again!)

2-person cooperative bargaining

Nash (1953): Two-Person Cooperative Games. Econometrica 21.

Aside: there were earlier versions due to Edgeworth 1881, Zeuthen 1930 and von Neumann and Morgenstern 1944.

2-person cooperative bargaining

Two person sharing the unit-pie

Basic ingredients:

- players $N = \{1, 2\}$
- outside options $v(i) = o_i \in [0, 1)$ for both $i \in N$
- agreement value v(N) = 1

The aim:

- The goal is to reach an agreement (*s*₁, *s*₂) such that
- $s_1 + s_2 = 1 Pareto$ efficient
- $s_i \ge o_i$ for all i Individually rational

Nash bargaining 1

Individual preferences and normative postulates:

- Agents have different preferences $u_i(c)$ s.t.
- $\partial u_i(c)/\partial c > 0$ and
- $\partial^2(u_i(c))/\partial c^2 < 0$
- The outcome that is reached should be "fair"!
- But what is fair?

If everything (including preferences and outside options) is identical, ... easy... 50 : 50 is fair.

Nash bargaining 2

In general, there may be conflict between what is "fair" and what will be reached by strategic bargaining.

Nash program

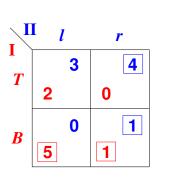
Derive a framework for noncooperative bargaining, at the end of which the outcome is a *Nash equilibrium* (i.e. such that everyone's choice is optimal given the choices of others), and that outcome implements a *cooperative solution* concept.

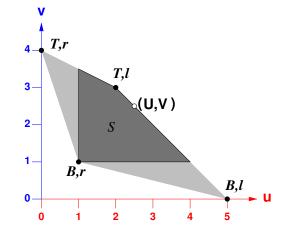
Illustrating the Nash program

- Bargaining sets obtained from a bimatrix game
- Bargaining axioms
- The Nash bargaining solution
- Geometric characterization of the Nash bargaining solution
- Splitting a unit pie, concave utility functions
- The ultimatum game
- Alternating offers over several rounds
- Stationary strategies
- The Nash bargaining solution via alternating offers

Toward a cooperative bargaining solution: "The Nash Bargaining Solution" JF Nash (1950). 'The Bargaining Problem'. *Econometrica* 18(2) : 155 - 162.

Bargaining set from a bimatrix game





Axioms for **Bargaining Set** $S \subset \mathbb{R}^2$

- Threat point (u₀, v₀) ∈ S, for all (u, v) ∈ S: u ≥ u₀, v ≥ v₀.
- *S* is compact (bounded and closed)
- *S* is convex (via agreed joint lotteries)

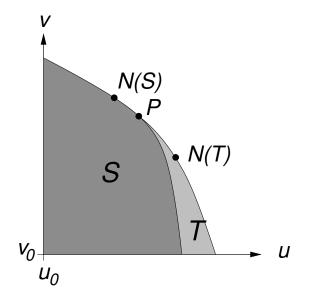
Axioms for Nash Bargaining Solution N(S)

- $N(S) = (U, V) \in S$.
- **Pareto-optimality:** for all $(u, v) \in S$:

 $u \ge U$ and $v \ge V \implies (u, v) = (U, V)$

- Invariance of utility scaling: a, c > 0, $S' = \{(au + b, cv + d) \mid (u, v) \in S\} \Rightarrow N(S') = (aU + b, cV + d).$
- Symmetry: if S is symmetric, then so is N(S): If $(u, v) \in S$ implies $(v, u) \in S$, then U = V.
- Irrelevance of unused alternatives: If S, T are bargaining sets with the same threat point and $S \subset T$, then $N(T) \notin S$ or N(T) = N(S).

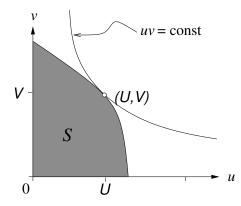
Irrelevance of unused alternatives



The Nash bargaining solution [Nash 1950]

Under the Nash bargaining axioms, every bargaining set S containing a point (u, v) with $u > u_0$ and $v > v_0$ has a unique solution N(S) = (U, V).

(U, V) maximises the following product-Nash product: $(U - u_0)(V - v_0)$ for $(U, V) \in S$.



Nash bargaining solution - proof

• Shift threat point (u_0, v_0) to (0, 0): replace S with $S' = \{(u - u_0, v - v_0) \mid (u, v) \in S\}$

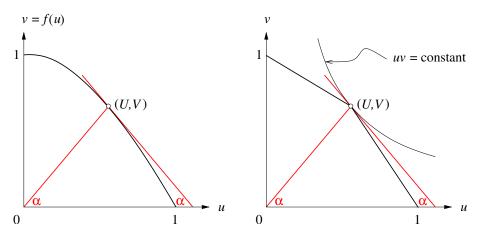
 \Rightarrow Nash product maximised as UV (rather than $(U - u_0)(V - v_0)$)

- re-scale utilities so that (U, V) = (1, 1): replace *S* with $S' = \{(u/U, v/V) \mid (u, v) \in S\}$.
- consider T = {(u, v) | u ≥ 0, v ≥ 0, u + v ≤ 2}
 N(T) = (1, 1), because T is a symmetric set, and (1, 1) is the only symmetric point on the Pareto-frontier of T.
- Claim: $S \subseteq T \Rightarrow$ (by independence of irrelevant alternatives) N(S) = N(T) because $(1, 1) \in S$.

Proof that $S \subseteq T$

Proof that $S \subseteq T$ Suppose exists $(\overline{u}, \overline{v}) \in S$, $(\overline{u}, \overline{v}) \notin T \Rightarrow \overline{u} + \overline{v} > 2$. Idea: even if Nash product $\overline{u} \, \overline{v} \leq 1 = UV$, still uv > 1 for $(u, v) = (1 - \varepsilon)(1, 1) + \varepsilon(\overline{u}, \overline{v})$, contracting maximality of UV, where $(u, v) \in S$ by convexity of S.

Geometric characterization of U, V

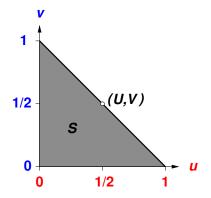


Splitting a unit pie

Suppose player I and player II have to split an amount (a "pie") of one unit into x for player I and y for player II, where

 $x \ge 0, \quad y \ge 0, \quad x+y \le 1.$

Then this defines in a simple way a bargaining set S if u = x and v = y.



Split pie with utility functions

More generally, assume the pie is split into x and y so that player I receives u(x), player II receives v(y), where $x \ge 0, y \ge 0, x + y \le 1$. Here player I has utility function $u : [0, 1] \rightarrow [0, 1]$ player II has utility function $v : [0, 1] \rightarrow [0, 1]$ with u(0) = 0, u(1) = 1, v(0) = 0, v(1) = 1, and u and v increasing, continuous, and **concave**.

Concave utility functions

A concave utility function u has "diminishing returns". If u is differentiable this means $u'' \leq 0$, in general

 $(1-p)u(x) + pu(x') \le u((1-p)x + px')$

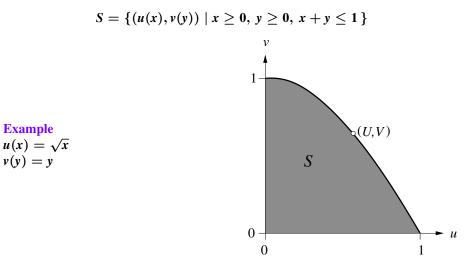
Example $u(x) = \sqrt{x}$

for all x, x' and $p \in [0, 1]$.

u(x') $u(\mathbf{x})$ 0 x' 0 X

Convex bargaining set

With concave u and v, the bargaining set S is convex,



Nash bargaining solution

Example $u(x) = \sqrt{x}$, v(y) = yPareto-frontier = { $(u(x), v(1 - x) | 0 \le x \le 1$ }

The Nash bargaining solution maximizes

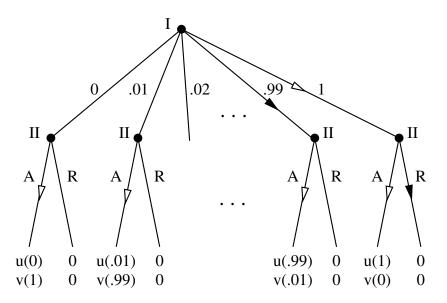
$$u(x)v(1-x) = \sqrt{x}(1-x) = x^{1/2} - x^{3/2}$$
.

Derivative set to zero:

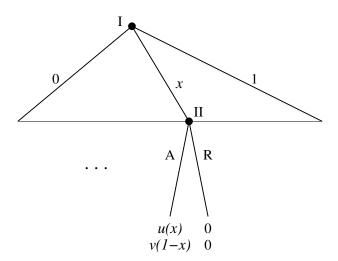
$$0 = \frac{1}{2}x^{-1/2} - \frac{3}{2}x^{1/2} = \frac{1}{2}x^{-1/2}(1-3x),$$

that is, x = 1/3 = share for player I, and player II gets y = 2/3. Utilities $(U, V) = (\sqrt{1/3}, 2/3) \approx (0.577, 0.667)$. Toward noncooperative foundations: "The Rubinstein Bargaining Model" A Rubinstein (1982). 'Perfect Equilibrium in a Bargaining Model'. *Econometrica* 50(1) : 97 - 109.

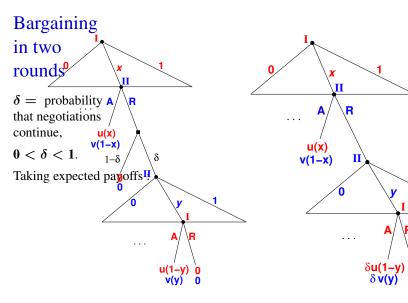
The ultimatum game



Continuous version of the ultimatum game



SPNE: player I makes player II indifferent between accepting and rejecting, here with x = 1, but player II nevertheless accepts.



R

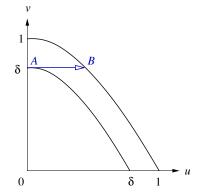
0

0

Graphical solution for two rounds

SPNE : in last round, player II makes the ultimatum demand of y = 1, player I accepts, player II gets $\delta v(y) = \delta$, player I gets 0.

In previous (first) round, player I makes player II indifferent between accepting and (A) rejecting and making her counterdemand, where she gets δ , by offering 1-x so that (B) $v(1-x) = \delta$, and player II accepts in round 1, at point B. Payoffs are u(x), v(1-x).

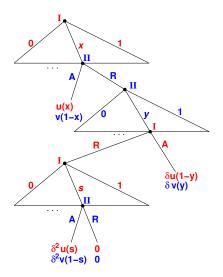


Bargaining in three rounds

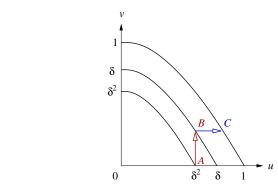
x = demand by player I in round 1

y = counter-demand by player II in round 2

s = counter-counter-demand by player I in last round 3

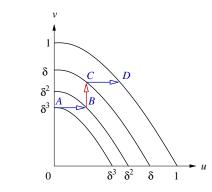


Graphical solution for three rounds



 $A \to B: \delta^2 u(1) = \delta u(1 - y) \text{ (round 2, player II chooses } y)$ $B \to C: \delta v(y) = v(1 - x) \text{ (round 1, player I chooses } x)$

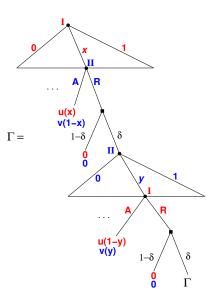
Graphical solution for four rounds



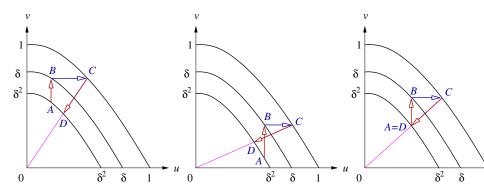
 $A \to B: \delta^3 v(1) = \delta^2 v(1-s) \text{ (round 3, player I chooses s)}$ $B \to C: \delta^2 u(s) = \delta u(1-y) \text{ (round 2, player II chooses y)}$ $C \to D: \delta v(y) = v(1-x) \text{ (round 1, player I chooses x)}$

Infinite number of rounds

look for stationary strategies x and y

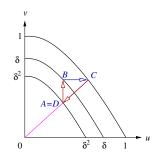


Find stationary strategies graphically



 $A \to B: \delta^2 u(s) = \delta u(1 - y) \text{ (round 2, player II chooses } y)$ $B \to C: \delta v(y) = v(1 - x) \text{ (round 1, player I chooses } x)$ $C \to D: u(s) = u(x) ? \text{ yes! } (\Leftrightarrow s = u, \text{ stationarity})$

Characterization of stationary strategies



In rounds 2, 4, 6,...: $A \to B$: player II demands y so that $\delta^2 u(x) = \delta u(1-y) \Leftrightarrow \delta u(x) = u(1-y)$

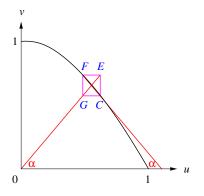
In rounds 1, 3, 5,...: $B \to C$: player I demands x so that $\delta v(y) = v(1-x)$ (two equations with two unknowns)

The Nash bargaining solution via alternating offers

Theorem

As $\delta \to 1$, the payoffs u(x), v(y) for the stationary strategies x and y of alternating offers with an infinite number of rounds tend to the **Nash bargaining solution** U, V that maximizes UV for U = u(x), V = v(1 - x).

Graphical proof



$$C = (u(x), v(1 - x)), F = (u(1 - y), v(y)), E = (u(x), v(y)), G = (\delta u(x), \delta v(y)).$$

$$G \to C:$$

$$\delta v(y) = v(1-x),$$

$$G \to F:$$

$$\delta u(x) = u(1-y)$$

 $\Rightarrow CEFG \text{ is a rectangle with diagonals } FC \text{ and } GE \text{ of equal slope } \alpha.$

Bargaining evidence from laboratory experiments

AE Roth (1995). 'Bargaining Experiments.' In Handbook of Experimental Economics, edited by John Kagel and Alvin E. Roth, 253-348. Princeton University Press.

VL Smith (1962). 'An Experimental Study of Competitive Market Behavior.' Journal of Political Economy 70(2): 111-137.

Ultimatum Game Bargaining

recall last lecture

As in the Rubinstein bargaining model (with only one bargaining round)

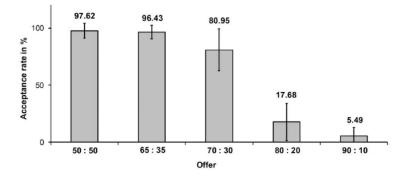
- (1) the proposer (player 1) suggests a split between him and the receiver (player 2)
- 2 Player 2 can either accept or reject:
 - If he accepts, the shares proposed by player 1 realize
 - If he rejects, both players receive nothing.
- Nash equilibria: any split supportable as a Nash equilibrium
- Unique subgame-perfect Nash equilibrium prediction: (1 all, 2 nothing)

Recap: features and evidence

- Rejection by the responder kills own and other's payoff
- Any positive proposal, expecting acceptance, seems like a 'gift';
- however, expecting (off the SPNE-path) rejection if one's offer is too low, a substantial proposal may be strategically rational
- hence, for the responder, it may be rational to have a **rejection reputation**
- Meta-analysis suggests
 - proposals of roughly 40%;
 - high rejection rates for proposals under 20%, intermediate rejection rates for proposals of 20%-40%, and almost zero rejection rates for proposals >40%
 - rates vary with stakes, matching protocol, etc.

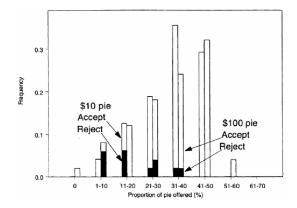
Recap 1: acceptance rates

Acceptance rate of the offers



from Hollmann et al., PLoS ONE 2011

Recap 2: offers



from Hoffman et al., IJGT 1996

THANKS EVERYBODY Keep checking the website for new materials as we progress: http://gametheory.online/project_show/9