BARGAINING

Heinrich H. Nax
Bary S. R. Pradelski
\&
heinrich.nax@uzh.ch
bpradelski@cnrs.fr

University of
Zurich ${ }^{\text {VIH }}$
Centre National
de la Recherche
Scientifique

Plan for today

(1) Bargaining applications
(2) Cooperative bargaining solution
(3) Noncooperative bargaining program
(4) Experimental bargaining

Lecture logic

Topic

- Introduce bargaining
- Illustrations/ applications
- Bridge cooperative and noncooperative game theory (again...)

Appeal

- Bargaining is ubiquitous
- May be useful in real life
- Illustrates the idea of the "Nash program"

Examples of bargaining

Markets:

- Individuals (buyer/seller)
- Strategies (bid/ask certain prices)
- Outcome (profits/losses)

Splitting:

- Players (partners)
- Strategies (demands)
- Outcome (a split)

Bargaining in real-world markets

Bombay Stock Exchange

Stock market:

- Individuals (buyer/seller)
- Strategies (bid/ask certain prices)
- Outcome (profits/losses)

L'Inde Fantome
(L. Malle 1969)

Bargaining over what?

Buyers/sellers and their willingness to pay/accept

Buyer $\boldsymbol{i} \in \boldsymbol{B}$ and seller $\boldsymbol{j} \in \boldsymbol{S}$ look for partners $(|\boldsymbol{B}|=|\boldsymbol{S}|=\boldsymbol{N})$ - each seller owns exactly one good and each buyer wants exactly one good

- Buyer \boldsymbol{i} is willing to pay at most $r_{i}^{+}(j) \in \boldsymbol{\delta} \mathbb{N}$ for the product of seller j
- Seller j is willing to accept at least $r_{j}^{-}(i) \in \delta \mathbb{N}$ to sell his product to buyer \boldsymbol{i} where $\delta>\mathbf{0}$ is the minimum unit ('dollars')
$\delta \mathbb{N}$
$r_{i}^{+}(j)$

$r_{j}^{-}(i)$
0

Bargaining over the match value

The match value for the pair $(\boldsymbol{i}, \boldsymbol{j})$ is

$$
\alpha_{i j}=\left(r_{i}^{+}(j)-r_{j}^{-}(i)\right)_{+}
$$

Let $\alpha=\left(\alpha_{i j}\right)_{i \in F, j \in W}$

Normalization.

Let's normalize this value to the 'unit-pie' $\boldsymbol{\alpha}_{i j}=\mathbf{1}$ for some $(\boldsymbol{i}, \boldsymbol{j})$.

Is there any economic activity more basic than two people dividing a pie?

The pie could symbolize the gains from trade in a market, the surplus generated within a firm, or the benefit from writing a joint paper on economics. Supposing that the nature of the split does not affect the pie's total size, this is a case in which distribution and efficiency is thought not to conflict. Surely, sensible people will come to some agreement rather than backing away from the transaction empty-handed. This argument has permeated economic thinking at least since Edgeworth [1881], and is sometimes referred to as neoclassical bargaining theory (see, e.g., Harsanyi [1987]).
from T. Ellingsen (1997): The Evolution of Bargaining Behavior.

The basic bargaining model

- Ingredients:
- Multiple parties/players
- A common gain/pie
- No central authority
- Bargaining ensues
- Some outcome is reached

From the analyst's point of view, how do we model this as a "game"?

Two approaches

- Cooperative:
- Multiple parties/players
- Coalitions form/contract is written
- Normative axioms are established
- Outcome is identified
- Outcome is implemented
- Noncooperative:
- Multiple parties/players
- Bargaining follows some rules
- Players act strategically
- Bargaining takes place
- Outcome is implemented

Examples

- Cooperative:
- Twins share presents
- They have identical preferences
- Twins agree on a splitting rule
- Sharing fifty-fifty is the only fair rule accepted by both
- Presents are divided in equal halves
- Outcome is implemented
- Noncooperative:
- A buyer and a seller meet on the market
- They have different preferences
- Buyers make offers
- Sellers make counteroffers
- Both try to get the most out of the deal
- If an offer is accepted, they deal
- If not, no deal

Compare with our 'cooperative solutions' (Lecture 2)

- Shapley value:
- All players could agree on the axioms
- They could write an agreement that the SV is implemented
- Then the outcome would be implemented
- Core:
- When the SV lies inside the core, this seems stable
- However, as the SV may lie outside the core
- Or when the core is empty
- Then there would exist coalitions that perhaps would break the deal

The first formal model (Nash again!)

2-person cooperative bargaining

Nash (1953): Two-Person Cooperative Games. Econometrica 21.

Aside: there were earlier versions due to Edgeworth 1881, Zeuthen 1930 and von Neumann and Morgenstern 1944.

2-person cooperative bargaining

Two person sharing the unit-pie

Basic ingredients:

- players $N=\{\mathbf{1 , 2}\}$
- outside options $v(i)=o_{i} \in[0,1)$ for both $i \in N$
- agreement value $v(N)=1$

The aim:

- The goal is to reach an agreement $\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right)$ such that
- $s_{1}+s_{2}=1$ - Pareto efficient
- $\boldsymbol{s}_{i} \geq \boldsymbol{o}_{\boldsymbol{i}}$ for all $\boldsymbol{i}-$ Individually rational

Nash bargaining 1

Individual preferences and normative postulates:

- Agents have different preferences $\boldsymbol{u}_{i}(\boldsymbol{c})$ s.t.
- $\partial u_{i}(c) / \partial c>0$ and
- $\partial^{2}\left(u_{i}(c)\right) / \partial c^{2}<0$
- The outcome that is reached should be "fair"!
- But what is fair?

If everything (including preferences and outside options) is identical, ... easy...
$50: 50$ is fair.

Nash bargaining 2

In general, there may be conflict between what is "fair" and what will be reached by strategic bargaining.

Nash program

Derive a framework for noncooperative bargaining, at the end of which the outcome is a Nash equilibrium (i.e. such that everyone's choice is optimal given the choices of others), and that outcome implements a cooperative solution concept.

Illustrating the Nash program

- Bargaining sets obtained from a bimatrix game
- Bargaining axioms
- The Nash bargaining solution
- Geometric characterization of the Nash bargaining solution
- Splitting a unit pie, concave utility functions
- The ultimatum game
- Alternating offers over several rounds
- Stationary strategies
- The Nash bargaining solution via alternating offers

Toward a cooperative bargaining solution: "The Nash Bargaining Solution" JF Nash (1950). 'The Bargaining Problem'. Econometrica 18(2) : 155-162.

Bargaining set from a bimatrix game

Axioms for Bargaining Set $S \subset \mathbb{R}^{2}$

- Threat point $\left(u_{0}, v_{0}\right) \in S$, for all $(u, v) \in S: \quad u \geq u_{0}, v \geq \boldsymbol{v}_{\mathbf{0}}$.
- \boldsymbol{S} is compact (bounded and closed)
- S is convex (via agreed joint lotteries)

Axioms for Nash Bargaining Solution $\boldsymbol{N}(\boldsymbol{S})$

- $N(S)=(U, V) \in S$.
- Pareto-optimality: for all $(u, v) \in S$:
$\boldsymbol{u} \geq \boldsymbol{U}$ and $\boldsymbol{v} \geq \boldsymbol{V} \Rightarrow(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{U}, \boldsymbol{V})$
- Invariance of utility scaling: $a, c>0$, $S^{\prime}=\{(a u+b, c v+d) \mid(u, v) \in S\} \Rightarrow N\left(S^{\prime}\right)=(a U+b, c V+d)$.
- Symmetry: if S is symmetric, then so is $N(S)$: If $(u, v) \in S$ implies $(v, u) \in S$, then $U=V$.
- Irrelevance of unused alternatives: If $\boldsymbol{S}, \boldsymbol{T}$ are bargaining sets with the same threat point and $S \subset T$, then $N(T) \notin S$ or $N(T)=N(S)$.

Irrelevance of unused alternatives

The Nash bargaining solution [Nash 1950]

Under the Nash bargaining axioms, every bargaining set \boldsymbol{S} containing a point $(\boldsymbol{u}, \boldsymbol{v})$ with $u>\boldsymbol{u}_{\mathbf{0}}$ and $\boldsymbol{v}>\boldsymbol{v}_{\mathbf{0}}$ has a unique solution $N(S)=(U, V)$.
$(\boldsymbol{U}, \boldsymbol{V})$ maximises the following product-
Nash product: $\quad\left(U-u_{0}\right)\left(V-v_{0}\right)$ for $(U, V) \in S$.

Nash bargaining solution - proof

- Shift threat point $\left(u_{0}, v_{0}\right)$ to $(0,0)$:
replace S with $S^{\prime}=\left\{\left(\boldsymbol{u}-\boldsymbol{u}_{\mathbf{0}}, \boldsymbol{v}-\boldsymbol{v}_{\mathbf{0}}\right) \mid(\boldsymbol{u}, \boldsymbol{v}) \in S\right\}$
\Rightarrow Nash product maximised as $\boldsymbol{U} \boldsymbol{V}$ (rather than $\left(\boldsymbol{U}-\boldsymbol{u}_{\mathbf{0}}\right)\left(\boldsymbol{V}-\boldsymbol{v}_{\mathbf{0}}\right)$)
- re-scale utilities so that $(\boldsymbol{U}, \boldsymbol{V})=(\mathbf{1}, \mathbf{1})$:
replace S with $S^{\prime}=\{(u / U, v / V) \mid(u, v) \in S\}$.
- consider $T=\{(u, v) \mid u \geq 0, v \geq 0, u+v \leq 2\}$
$N(T)=(\mathbf{1}, \mathbf{1})$, because T is a symmetric set, and $(\mathbf{1}, \mathbf{1})$ is the only symmetric point on the Pareto-frontier of T.
- Claim: $S \subseteq T \Rightarrow$ (by independence of irrelevant alternatives) $N(S)=N(T)$ because $(\mathbf{1}, \mathbf{1}) \in S$.

Proof that $\boldsymbol{S} \subseteq \boldsymbol{T}$

Proof that $\boldsymbol{S} \subseteq \boldsymbol{T}$

Suppose exists $(\bar{u}, \bar{v}) \in S,(\bar{u}, \bar{v}) \notin T \Rightarrow \bar{u}+\bar{v}>\mathbf{2}$.
Idea: even if Nash product $\overline{\boldsymbol{u}} \overline{\boldsymbol{v}} \leq \mathbf{1}=\boldsymbol{U} \boldsymbol{V}$, still $\boldsymbol{u v}>\mathbf{1}$ for $(u, v)=(1-\varepsilon)(\mathbf{1}, \mathbf{1})+\varepsilon(\bar{u}, \bar{v})$, contracting maximality of $U V$, where $(\boldsymbol{u}, \boldsymbol{v}) \in \boldsymbol{S}$ by convexity of \boldsymbol{S}.

Geometric characterization of $\boldsymbol{U}, \boldsymbol{V}$

Splitting a unit pie

Suppose player I and player II have to split an amount (a "pie") of one unit into \boldsymbol{x} for player I and \boldsymbol{y} for player II, where
$x \geq 0, \quad y \geq 0, \quad x+y \leq 1$.
Then this defines in a simple way a bargaining set \boldsymbol{S} if $\boldsymbol{u}=\boldsymbol{x}$ and $v=y$.

Split pie with utility functions

More generally, assume the pie is split into \boldsymbol{x} and \boldsymbol{y} so that player I receives $\boldsymbol{u}(\boldsymbol{x})$, player II receives $\boldsymbol{v}(\boldsymbol{y})$, where $\boldsymbol{x} \geq \mathbf{0}, \boldsymbol{y} \geq \mathbf{0}, \boldsymbol{x}+\boldsymbol{y} \leq \mathbf{1}$. Here player I has utility function $u:[\mathbf{0}, \mathbf{1}] \rightarrow[\mathbf{0}, \mathbf{1}]$ player II has utility function $v:[\mathbf{0}, \mathbf{1}] \rightarrow[\mathbf{0}, \mathbf{1}]$ with $u(0)=0, u(1)=1, v(0)=0, v(1)=1$, and u and v increasing, continuous. and concave.

Concave utility functions

A concave utility function \boldsymbol{u} has "diminishing returns". If \boldsymbol{u} is differentiable this means $\boldsymbol{u}^{\prime \prime} \leq \mathbf{0}$, in general

$$
(1-p) u(x)+p u\left(x^{\prime}\right) \leq u\left((1-p) x+p x^{\prime}\right)
$$

for all $\boldsymbol{x}, \boldsymbol{x}^{\prime}$ and $\boldsymbol{p} \in[\mathbf{0}, \mathbf{1}]$.

Example

$u(x)=\sqrt{x}$

Convex bargaining set

With concave \boldsymbol{u} and \boldsymbol{v}, the bargaining set \boldsymbol{S} is convex,

$$
S=\{(u(x), v(y)) \mid x \geq 0, y \geq 0, x+y \leq 1\}
$$

Example

$$
\begin{aligned}
& u(x)=\sqrt{x} \\
& v(y)=y
\end{aligned}
$$

Nash bargaining solution

Example $u(x)=\sqrt{x}, \quad v(y)=y$
Pareto-frontier $=\{(u(x), v(1-x) \mid 0 \leq x \leq 1\}$
The Nash bargaining solution maximizes

$$
u(x) v(1-x)=\sqrt{x}(1-x)=x^{1 / 2}-x^{3 / 2}
$$

Derivative set to zero:

$$
0=\frac{1}{2} x^{-1 / 2}-\frac{3}{2} x^{1 / 2}=\frac{1}{2} x^{-1 / 2}(1-3 x)
$$

that is, $\boldsymbol{x}=\mathbf{1} / \mathbf{3}=$ share for player I, and player II gets $\boldsymbol{y}=\mathbf{2} / \mathbf{3}$.
Utilities $(U, V)=(\sqrt{\mathbf{1 / 3}}, 2 / 3) \approx(0.577,0.667)$.

Toward noncooperative foundations: "The Rubinstein Bargaining Model" A Rubinstein (1982). 'Perfect Equilibrium in a Bargaining Model'. Econometrica 50(1) : 97 - 109.

The ultimatum game

Continuous version of the ultimatum game

SPNE: player I makes player II indifferent between accepting and rejecting, here with $\boldsymbol{x}=\mathbf{1}$, but player II nevertheless accepts.

Graphical solution for two rounds

SPNE : in last round, player II makes the ultimatum demand of $\boldsymbol{y}=\mathbf{1}$, player I accepts, player II gets $\boldsymbol{\delta} \boldsymbol{v}(\boldsymbol{y})=\boldsymbol{\delta}$, player I gets 0 .

In previous (first) round, player I makes player II indifferent between accepting and (A) rejecting and making her counterdemand, where she gets δ, by offering $\mathbf{1 - x}$ so that (B) $\boldsymbol{v}(\mathbf{1}-\boldsymbol{x})=\boldsymbol{\delta}$, and player II accepts in round 1 , at point B.
Payoffs are $\boldsymbol{u}(\boldsymbol{x}), \boldsymbol{v}(\mathbf{1}-\boldsymbol{x})$.

Bargaining

in three
rounds
$\boldsymbol{x}=$ demand by player I
in round 1
$\boldsymbol{y}=$ counter-demand by
player II in round 2
$\boldsymbol{s}=$ counter-counter-demand by player I in last round 3

Graphical solution for three rounds

$A \rightarrow B: \delta^{2} u(1)=\delta u(1-y)$ (round 2, player II chooses \boldsymbol{y})
$\boldsymbol{B} \rightarrow \boldsymbol{C}: \delta \boldsymbol{v}(\boldsymbol{y})=\boldsymbol{v}(\mathbf{1}-\boldsymbol{x}) \quad$ (round 1, player I chooses \boldsymbol{x})

Graphical solution for four rounds

$A \rightarrow B: \delta^{\mathbf{3}} \boldsymbol{v}(\mathbf{1})=\delta^{2} \boldsymbol{v}(\mathbf{1}-\boldsymbol{s})$ (round 3, player I chooses \boldsymbol{s})
$B \rightarrow C: \delta^{2} u(s)=\delta u(1-y) \quad$ (round 2, player II chooses \boldsymbol{y})
$\boldsymbol{C} \rightarrow \boldsymbol{D}: \delta \boldsymbol{v}(\boldsymbol{y})=\boldsymbol{v}(\mathbf{1}-\boldsymbol{x}) \quad$ (round 1, player I chooses \boldsymbol{x})

Infinite number of rounds

look for stationary strategies \boldsymbol{x} and \boldsymbol{y}

Find stationary strategies graphically

$\boldsymbol{A} \rightarrow \boldsymbol{B}: \delta^{2} u(s)=\delta u(1-y)$ (round 2, player II chooses \boldsymbol{y})
$\boldsymbol{B} \rightarrow \boldsymbol{C}: \delta \boldsymbol{v}(\boldsymbol{y})=\boldsymbol{v}(\mathbf{1}-\boldsymbol{x}) \quad$ (round 1, player I chooses \boldsymbol{x})
$\boldsymbol{C} \rightarrow \boldsymbol{D}: \boldsymbol{u}(s)=\boldsymbol{u}(x)$? yes! $(\Leftrightarrow s=\boldsymbol{u}$, stationarity)

Characterization of stationary strategies

In rounds $2,4,6, \ldots: A \rightarrow \boldsymbol{B}:$ player II demands \boldsymbol{y} so that $\boldsymbol{\delta}^{2} \boldsymbol{u}(\boldsymbol{x})=\boldsymbol{\delta} \boldsymbol{u}(\mathbf{1}-\boldsymbol{y}) \Leftrightarrow$ $\delta u(x)=u(1-y)$

In rounds $1,3,5, \ldots: B \rightarrow C$: player I demands x so that $\delta v(y)=v(1-x)$ (two equations with two unknowns)

The Nash bargaining solution via alternating offers

Theorem

As $\boldsymbol{\delta} \rightarrow \mathbf{1}$, the payoffs $\boldsymbol{u}(x), \boldsymbol{v}(\boldsymbol{y})$ for the stationary strategies \boldsymbol{x} and \boldsymbol{y} of alternating offers with an infinite number of rounds tend to the Nash bargaining solution U, V that maximizes $U V$ for $U=u(x), V=v(1-x)$.

Graphical proof

$$
\begin{aligned}
& C=(u(x), v(1-x)), \\
& F=(u(1-y), v(y)), \\
& E=(u(x), v(y)), \\
& G=(\delta u(x), \delta v(y)), \\
& G \rightarrow C: \\
& \delta v(y)=v(1-x), \\
& G \rightarrow F: \\
& \delta u(x)=u(1-y) \\
& \hline
\end{aligned}
$$

$\Rightarrow C E F G$ is a rectangle with diagonals $\boldsymbol{F C}$ and $\boldsymbol{G E}$ of equal slope $\boldsymbol{\alpha}$.

Bargaining evidence from laboratory experiments
AE Roth (1995). ‘Bargaining Experiments.' In Handbook of Experimental Economics, edited by John Kagel and Alvin E. Roth, 253-348. Princeton University Press.

VL Smith (1962). ‘An Experimental Study of Competitive Market Behavior.' Journal of Political Economy 70(2): 111-137.

Ultimatum Game Bargaining

- recall last lecture

As in the Rubinstein bargaining model (with only one bargaining round)
(1) the proposer (player 1) suggests a split between him and the receiver (player 2)
(2) Player 2 can either accept or reject:
(1) If he accepts, the shares proposed by player 1 realize
(2) If he rejects, both players receive nothing.

- Nash equilibria: any split supportable as a Nash equilibrium
- Unique subgame-perfect Nash equilibrium prediction: (1 all, 2 nothing)

Recap: features and evidence

- Rejection by the responder kills own and other's payoff
- Any positive proposal, expecting acceptance, seems like a 'gift';
- however, expecting (off the SPNE-path) rejection if one's offer is too low, a substantial proposal may be strategically rational
- hence, for the responder, it may be rational to have a rejection reputation
- Meta-analysis suggests
- proposals of roughly 40%;
- high rejection rates for proposals under 20%, intermediate rejection rates for proposals of $20 \%-40 \%$, and almost zero rejection rates for proposals $>40 \%$
- rates vary with stakes, matching protocol, etc.

Recap 1: acceptance rates

Acceptance rate of the offers

from Hollmann et al., PLoS ONE 2011

Recap 2: offers

from Hoffman et al., IJGT 1996

THANKS EVERYBODY

Keep checking the website for new materials as we progress:
http://gametheory.online/project_show/9

