Heinrich H. Nax

&

heinrich.nax@uzh.ch

Bary S. R. Pradelski

bpradelski@ethz.ch

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Dynamic games

Many situations (games) are characterized by sequential decisions and information about prior moves

- Market entrant vs. incumbent (think BlackBerry vs. Apple iPhone)
- Chess
- ...

When such a game is written in strategic form, important information about timing and information is lost.

Solution:

- Extensive form games (via game trees)
- Discussion of timing and information
- New equilibrium concepts

Example: perfect information

Battle of the sexes:

	a	b
Α	3,1	0,0
В	0,0	1,3

What if row player (player 1) can decide first?

Example: perfect information

What would you do as player 1, A or B?

What would you do as player 2 if player 1 played A, a or b? What would you do as player 2 if player 1 played B, a or b?

Player 2 would like to commit that if player 1 plays A he will play b (in order to make player 1 play B).

But fighting is not time consistent. Once player 1 played A it is not rational for player 2 to play b.

The expected outcome is A followed by a for payoffs (3, 1).

This is called **backward induction**. It results in a **subgame perfect equilibrium**. More later!

Example: imperfect information (3,1) (0,0) (0,0) (1,3) (1,3) (0,0) (1,3) (1,3) (0,0) (1,3)

What would you do as player 1, A or B? What would you do as player 2, a or b?

Timing and information matters!

Extensive form game: Definition

An extensive-form game is defined by:

- **Players**, *N* = {1,...,*n*}, with typical player *i* ∈ *N*. Note: *Nature* can be one of the players.
- Basic structure is a tree, the **game tree** with nodes *a* ∈ *A*. Let *a*₀ be the root of the tree.
- Nodes are game states which are either
 - Decision nodes where some player chooses an action
 - **Chance nodes** where nature plays according to some probability distribution

Representation

Extensive form

- Directed graph with single initial node; edges represent moves
- Probabilities on edges represent Nature moves
- Nodes that the player in question cannot distinguish (information sets) are circled together (or connected by dashed line)

Extensive form \rightarrow normal form

- A strategy is a player's complete plan of action, listing move at every information set of the player
- Different extensive form games may have same normal form (loss of information on timing and information)

Question: What is the number of a player's strategies? Product of the number of actions available at each of his information sets.

Subgames (Selten 1965, 1975)

Given a node *a* in the game tree consider the subtree rooted at *a*. *a* is the root of a subgame if

- *a* is the only node in its information set
- if a node is contained in the subgame then all its successors are contained in the subgame
- every information set in the game either consists entirely of successor nodes to *a* or contains no successor node to *a*.

If a node a is a subroot, then each player, when making a choice at any information set in the game, knows whether a has been reached or not. Hence if a has been reached it is as if a "new" game has started.

Subgame examples

How many subgames does the game have?

Strategies player 1: $\{A, B\}$

Strategies player 2: $\{(a, a), (a, b), (b, a), (b, b)\}$

Subgame examples

How many subgames does the game have?

Which strategies does each player have?

Strategies player 1: $\{A, B\}$

Strategies player 2: $\{a, b\}$

Subgame examples: Equivalence to normal form

	a, a	a, b	b, a	b, b
Α	3,1	3,1	0,0	0,0
В	0, 0	1,3	0,0	1,3

	a	b
Α	3,1	0, 0
В	0, 0	1,3

where columns strategies are of the form *strategy against A, strategy against B*

Strategies in extensive games

PURE STRATEGY s_i One move for each information set of the player.

MIXED STRATEGY σ_i Any probability distribution x_i over the set of pure strategies S_i .

BEHAVIOR STRATEGY y_i Select randomly at each information set the move to be made (can delay coin-toss until getting there).

Behavior strategies are special case of a mixed strategy: moves are made with independent probabilities at information sets.

Pure strategies are special case of a behavior strategy.

Example (imperfect recall)

There is one player who has "forgotten" his first move when his second move comes up. (For example: did he lock the door before leaving or not?)

The indicated outcome, with probabilities in brackets, results from the mixed strategy, $\frac{1}{2}Aa + \frac{1}{2}Bb$.

 \Rightarrow There exists no behavior strategy that induces this outcome.

The player exhibits "poor memory" / "imperfect recall".

Perfect recall

Perfect recall (Kuhn 1950)

Player i in an extensive form game has *perfect recall* if for every information set h of player i, all nodes in h are preceded by the same sequence of moves of player i.

Kuhn's theorem

Definition: Realization equivalent

A mixed strategy σ_i is *realization equivalent* with a behavior strategy y_i if the realization probabilities under the profile σ_i, σ_{-i} are the same as those under y_i, σ_{-i} for all profiles σ .

Kuhn's theorem

Consider a player *i* in an extensive form with perfect recall. For every mixed strategy σ_i there exists a realization-equivalent behavior strategy y_i .

Kuhn's Theorem - proof (not part of exam)

Given: mixed strategy σ Wanted: realization equivalent behavior strategy y

Idea: y = observed behavior under σ y(c) = observed probability $\sigma(c)$ of making move *c*. What is $\sigma(c)$?

Look at sequence ending in c, here *lbc*. σ [*lbc*] = probability of *lbc* under $\sigma = \sigma(l, b, c)$.

Sequence lb leading to info set h

$$\mu [lb] = \sigma(l, b, c) + \sigma(l, b, d)$$

$$\Rightarrow \sigma [lb] = \sigma [lbc] + \sigma [lbd]$$

Kuhn's Theorem - proof (not part of exam)

$$\Rightarrow \sigma(c) = \frac{\sigma [lbc]}{\sigma [lb]} =: y(c)$$
$$\Rightarrow \sigma(b) = \frac{\sigma [l]}{\sigma [l]} =: y(b)$$
first info set: $\sigma [\emptyset] = 1 = \sigma [l] + \sigma [r]$
$$\sigma(l) = \frac{\sigma [l]}{\sigma [\emptyset]} =: y(l)$$
$$\Rightarrow y(l)y(b)y(c) = \frac{\sigma [l]}{\sigma [\emptyset]} \cdot \frac{\sigma [l]}{\sigma [l]} \cdot \frac{\sigma [lbc]}{\sigma [lb]}$$
$$= \sigma [lbc]$$

Subgame perfect equilibrium

Definition: subgame perfect equilibrium (Selten 1965)

A behavior strategy profile in an extensive form game is a *subgame perfect equilibrium* if for each subgame the restricted strategy is a Nash equilibrium of the subgame.

Theorem

Every finite game with prefect recall has at least one subgame perfect equilibrium. Generic such games have a unique subgame perfect equilibrium.

Generic = with probability 1 when payoffs are drawn from continuous independent distributions.

Example: An Outside-option game

Reconsider the battle-of-sexes game (BS game), but player 1 can decide if she joins the game before.

- What are the subgames?
- What are the subgame perfect equilibria?

Example: An Outside-option game

If player 1 decides to enter the BS subgame, player 2 will know that player 1 joint, but will not know her next move.

There exist three subgame perfect equilibria, one for each Nash equilibria of the BS game:

•
$$S = \{EA, A\}$$
 Player 1 earns 3, Player 2 earns 1.

- $S = \{TB, B\}$ Player 1 earns 2, Player 2 earns -1.
- $S = \{T(3/4 \cdot A + 1/4 \cdot B), (1/4 \cdot A + 3/4 \cdot B)\}$ Player 1 earns 2, Player 2 earns -1.

Cook-book: Backward induction

"Reasoning backwards in time":

- First consider the last time a decision might be made and choose what to do (that is, find Nash equilibria) at that time
- Using the former information, consider what to do at the second-to-last time a decision might be made

• ...

• This process terminates at the beginning of the game, the found behavior strategies are subgame prefect equilibria

Example: The Centiped game (Rosenthal)

What is the unique subgame perfect equilibirum?

Stop at all nodes.

But in experiments most subjects Pass initially: a "trust bubble" forms.

Palacios-Huerta & Volij:

- Chess masters stop right away; students do not...
- ... unless they are told they are playing chess masters.

THANKS EVERYBODY

Keep checking the website for new materials as we progress: http://gametheory.online/project_show/9