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Lecture 6: Evolutionary game theory

Common knowledge of rationality and the game

Suppose that players are rational decision makers and that mutual rationality
is common knowledge, that is:

I know that she knows that I will play rational

She knows that “I know that she knows that I will play rational”

I know that “She knows that “I know that she knows that I will play
rational””

...

Further suppose that all players know the game and that again is common
knowledge.
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Lecture 6: Evolutionary game theory

Rationality and the “as if” approach

The rationalistic paradigm in economics (Savage, The Foundations of
Statistics, 1954)

A person’s behavior is based on maximizing some goal function (utility)
under given constraints and information

The “as if” approach (Friedman, The methodology of positive economics,
1953)

Do not theorize about the intentions of agents’ actions but consider only
the outcome (observables)
Similar to the natural sciences where a model is seen as an approximation
of reality rather than a causal explanation (e.g., Newton’s laws)

But is the claim right? Do people act (as if) they where rational?
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Lecture 6: Evolutionary game theory

Nash’s mass-action interpretation (Nash, PhD thesis,1950)

“We shall now take up the “mass-action” interpretation of equilibrium
points. In this interpretation solutions have no great significance. It is
unnecessary to assume that the participants have full knowledge of the total
structure of the game, or the ability and inclination to go through any
complex reasoning processes. But the participants are supposed to
accumulate empirical information on the relative advantages of the various
pure strategies at their disposal.

...

Thus the assumption we made in this “mass-action” interpretation lead to the
conclusion that the mixed strategies representing the average behavior in
each of the populations form an equilibrium.”

(bold text added for this presentation)
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Lecture 6: Evolutionary game theory

Nash’s mass-action interpretation (Nash, PhD thesis,1950)

A large population of identical individuals represents each player role in
a game
The game is played recurrently (t = 0, 1, 2, 3, ...):

In each period one individual from each player population is drawn
randomly to play the game

Individuals observe samples of earlier behaviors in their own population
and avoid suboptimal play (successful strategies are copied more
frequently)

Nash’s claim: If all individuals avoid suboptimal pure strategies and the
population distribution is stationary then it constitutes a [Nash] equilibrium

Almost true! Evolutionary game theory formalizes these questions and
provides answers.
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Lecture 6: Evolutionary game theory

The folk theorem of evolutionary game theory

Folk theorem

If the population process converges from an interior initial state,
then for large t the distribution is a Nash equilibrium

If a stationary population distribution is stable, then it coincides
with a Nash equilibrium

Charles Darwin: “Survival of the fittest”
The population which is best adapted to environment (exogenous) will
reproduce more

Evolutionary game theory
The population which performs best against other populations (endogenous)
will survive/reproduce more
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Lecture 6: Evolutionary game theory

Domain of analysis

Symmetric two-player games

A symmetric two-player normal form game G = 〈N, {Si}i∈N , {ui}i∈N〉
consists of three object:

1 Players: N = {1, 2}, with typical player i ∈ N.
2 Strategies: S1 = S2 = S with typical strategy s ∈ S.
3 Payoffs: A function ui : (h, k)→ R mapping strategy profiles to a

payoff for each player i such that for all h, k ∈ S:

u2(h, k) = u1(k, h)
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Lecture 6: Evolutionary game theory

Battle of the Sexes

Cafe Pub
Cafe 4, 3 0, 0
Pub 0, 0 3, 4

Not symmetric since:

u1(Cafe,Cafe) 6= u2(Cafe,Cafe)
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Lecture 6: Evolutionary game theory

Prisoner’s dilemma

Cooperate Defect
Cooperate −1,−1 −8, 0

Defect 0,−8 −5,−5

Symmetric since:

u1(Cooperate,Cooperate) = u2(Cooperate,Cooperate) = −1

u1(Cooperate,Defect) = u2(Defect,Cooperate) = −8

u1(Defect,Cooperate) = u2(Cooperate,Defect) = 0

u1(Defect,Defect) = u2(Defect,Defect) = −5

9 / 18



Lecture 6: Evolutionary game theory

Symmetric Nash equilibrium

Definition: Symmetric Nash Equilibrium

A symmetric Nash equilibrium is a strategy profile σ∗ such that for ev-
ery player i,

ui(σ
∗, σ∗) ≥ ui(σ, σ

∗) for all σ

In words: If no player has an incentive to deviate from their part in a
particular strategy profile, then it is Nash equilibrium.

Proposition

In a symmetric normal form game there always exists a symmetric Nash
equilibrium.

Note: Not all Nash equilibria of a symmetric game need to be symmetric.
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Lecture 6: Evolutionary game theory

Evolutionarily stable strategy (Maynard Smith and Price,
1972)

Definition: Evolutionarily stable strategy (ESS)

A mixed strategy σ ∈ ∆(S) is an evolutionarily stable strategy (ESS)
if for every strategy τ 6= σ there exists ε(τ) ∈ (0, 1) such that for all
ε ∈ (0, ε(τ)):

U(σ, ετ + (1− ε)σ) > U(τ, ετ + (1− ε)σ)

Let ∆ESS be the set of evolutionarily stable strategies.

11 / 18



Lecture 6: Evolutionary game theory

Alternative representation

Note that an ESS needs to be a best reply to itself, thus ∆ESS is a subset of the
set of Nash equilibria.

Proposition

A mixed strategy σ ∈ ∆(S) is an evolutionarily stable strategy (ESS)
if:

U(τ, σ) ≤ U(σ, σ) ∀τ
U(τ, σ) = U(σ, σ) ⇒ U(τ, τ) < U(σ, τ) ∀τ 6= σ
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Lecture 6: Evolutionary game theory

Prisoner’s dilemma

Cooperate Defect
Cooperate −1,−1 −8, 0

Defect 0,−8 −5,−5

∆ESS = {Defect}

13 / 18



Lecture 6: Evolutionary game theory

Coordination game

A B
A 4, 4 0, 0
B 0, 0 1, 1

Nash equilibria:
(A,A), (B,B), (0.2 · A + 0.8 · B, 0.2 · A + 0.8 · B)

All Nash equilibra are symmetric.

But the mixed Nash equilibrium is not ESS:

A performs better against it!

Note that the mixed Nash equilibrium is trembling-hand perfect.
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Lecture 6: Evolutionary game theory

Existence of ESS not guaranteed

Example: Rock, paper, scissors

R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0

Unique Nash equilibrium and thus symmetric:
σ = (1

3 R, 1
3 P, 1

3 S)

All pure strategies are best replies and do as well against themselves as σ
does against them⇒ Not an ESS!
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Lecture 6: Evolutionary game theory

Relations to normal form refinements

Propositions

If σ ∈ ∆(S) is weakly dominated, then it is not evolutionarily
stable.

If σ ∈ ∆ESS, then (σ, σ) is a perfect equilibrium.

If (σ, σ) is a strict Nash equilibrium, then σ is evolutionarily
stable.
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Lecture 6: Evolutionary game theory

Summary

Evolutionary game theory studies mutation processes (ESS)

The stable states often coincide with solution concepts from the
“rational” framework

Evolutionary game theory does not explain how a population arrives at
such a strategy
⇒ Learning in games and behavioral game theory

The “best” textbook: Weibull, Evolutionary game theory, 1995
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Lecture 6: Evolutionary game theory

THANKS EVERYBODY

Keep checking the website for new materials as we progress:
http://gametheory.online/project_show/9
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