GROUP PROJECTS SUMMARY

INTRODUCTION TO GAME THEORY 2020

GROUP FORMATION VIA SPREADSHEET

Once you have formed a group, you can start working on the project.

The remaining groups will be formed randomly on May 25.

Consult the spreadsheet latest on evening of May 25 to see which group you are in.

Figure out a way to communicate - I won't tell you how. Up to you!

PROJECTS

You write a 10-30 page report, like a research paper, on your topic. Intro, Methods, Results, Discussion. Something like that. Your call!

You submit that by Monday, June 15, 2020. Details on how will come in time.

You may submit along with it slides or recorded presentations to explain what you did beyond your paper. It should be a net of one working week's work per person.

GROUP PROJECTS =

PROS
Synergies
Learning transfer
Social skills

CONS
Freeriding
Collusion
Grading

1/N?

- i.e.

Shd all members of a group get the same grade?

1/N?

- What if some people did more than others?

RELATIVE EFFORTS?

- Who know this?
- Who can verify it?

CONSIDER THE SCENARIO - HOW TO SPLIT?

- n people bake a cake together
- the cake is worth 1 dollar
- a third party holds it but has no idea of who did what
- people submit proposals about how it should be split
- the third party aggregates these proposals and pays

THE SITUATION

- E.g. 5 students do a course project together
- the project gets -for example- a 5.5
- What should the individual marks be?

5.5 TO ALL?

5.5?

- What if some people did more than others?

RELATIVE EFFORTS?

- Who know this? The examiner doesn't.
- Who can verify it? The examiner cannot.

YOU DO!

- You each specify what the contributions of everyone were

| USE

Paying the partners

T. Nicolaus Tideman • Florenz Plassmann

Impartial division of a dollar

Geoffroy de Clippel ${ }^{\mathrm{a}}$, Herve Moulin ${ }^{\text {a, },}$, Nicolaus Tideman ${ }^{\text {b }}$

FINAL GRADE

Equal to the outcome of the mutual evaluation exercise based on this mechanism by de Clippel et al. via DVSN.app

HOW?

THE GENERAL USE CASE

- A group collaborated and earned a project grade
- Who deserves which individual grade?

Our desiderata

THE GENERAL USE CASE

- A group collaborated and earned a project grade
- Who deserves which individual grade?

Our desiderata

- A mechanism
\checkmark Preventing free-riding
\checkmark Fostering synergetic collaboration
\checkmark Enabling fair division: instead of one size fits all
$>$ Without dissecting or micro-managing as the professor (i.e. without the teacher "looking into the process")

PROLOGUE ON A MECHANISM

1. First theory for basic case by de Clippel et al (JET 2008)
2. Adapted for a collective action framework
3. Implemented as a grading tool at ETH

The mechanism desiderata:

\checkmark Adequate

- average individual mark
- = overall group grade
\checkmark Consensual
- grades implement consensus when everyone agrees
\checkmark Anonymous
- equal treatment of everyone
\checkmark Impartial
- own verdicts of one's own contribution cannot improve one's grade

SOLUTION

- Prof grades the whole project
- Students review each other
- A formula aggregates the reviews to yield individual grades

The mechanism desiderata:

\checkmark Adequate

- average individual mark
- = overall group grade*
\checkmark Consensual
- grades implement consensus when everyone agrees
\checkmark Anonymous
- equal treatment of everyone
\checkmark Impartial
- own verdicts of one's own contribution cannot improve one's grade
*:with some rounding up in favor of students

SOLUTION

- Prof grades the whole
- Students review each other
- A formula aggregates the reviews to yield individual grades

The mechanism desiderata:

\checkmark Adequate

- average individual mark
- = overall group grade
\checkmark Consensual
- grades implement consensus when everyone agrees
\checkmark Anonymous
- equal treatment of everyone
\checkmark Impartial
- own verdicts of one's own contribution cannot improve one's grade

Unique(ish)
"formula" fulfilling these!

THE FORMULA

Average relative contribution jk $\quad S_{j k}^{m}=\frac{1}{\left|Q^{1}\right|-2} \sum_{i \in Q^{\prime} \backslash\{j, k\}} S_{j k}^{i m}$.
Average RC jk without i's opinion $\quad S_{j k}^{m}[-i]=\frac{1}{\left|Q^{\prime}\right|-3} \sum_{l \in Q^{\prime} \backslash\{j, k, i\}} S_{j k}^{l m}$.

Auxiliary function assigning share to i when j excluded

$$
g_{i}^{m}[-j]=\frac{1}{1+S_{j i}^{m}+\sum_{k \in Q^{\prime} \backslash\{i, j\}} S_{k i}^{m}[-j]}
$$

Final payment

share in the
other slices
i's residual in his slice

COMPLICATE
 D?

Yes, kind of.
But...

COMPLICATE

Yes, kind of.
But the properties are intuitive and the rating is very simple

AND it is the unique formula achieving: Adequateness
Consensus
Anonymity
Impartiality

Aim: Aligning individual and collective incentives through, projects suffer less from free-riding, get better, and individual marks are fairer.

COMPLICATE

 D?AND it is the unique formula achieving: Adequateness
Yes, kind of.
But the properties are intuitive and the rating is very simple

Consensus
Anonymity
Impartiality

Plus the burden is on the computer software, not on the student...

Aim: Aligning individual and collective incentives through, projects suffer less from free-riding, get better, and individual marks are fairer.

AN EXAMPLE

Carolin, Heiko, Sarah, Tobias

THE GROUP GETS A 5.25. WHO GETS WHICH GRADE?

[RECALL: IF EVERYONE SPLITS EQUALLY EVERYONE GETS THE SAME GRADE]

Carolin, Heiko, Sarah, Tobias

Carolin, Heiko, Sarah, Tobias

Heiko's evaluation

Carolin

32 \%

Sarah

Tobias

Carolin, Heiko, Sarah, Tobias

Carolin, Heiko, Sarah, Tobias

The group gets a 5.25 . Who gets which grade?

Carolin	24.43%	
Heiko	5	
Sarah	25.5	
Tobias	5.5	25.57%
		26.41%

ILLUSTRATION OF THE FORMULA

THE FORMULA

Average relative contribution $\mathrm{jk} \quad S_{j k}^{m}=\frac{1}{\left|Q^{\prime}\right|-2} \sum_{i \in Q^{\prime} \backslash\{j, k\}} S_{j k}^{i m}$.
Average RC jk without i's opinion $\quad S_{j k}^{m}[-i]=\frac{1}{\left|Q^{\prime}\right|-3} \sum_{l \in Q^{\prime} \backslash\{j, k, i\}} S_{j k}^{l m}$.

Auxiliary function assigning share to i when j excluded

$$
g_{i}^{m}[-j]=\frac{1}{1+S_{j i}^{m}+\sum_{k \in Q^{\prime} \backslash\{i, j\}} S_{k i}^{m}[-j]}
$$

Final payment

i's residual in his slice

THINK ABOUT IT

OR READ

Paying the partners

T. Nicolaus Tideman • Florenz Plassmann

Impartial division of a dollar

Geoffroy de Clippel ${ }^{\mathrm{a}}$, Herve Moulin ${ }^{\text {a, },}$, Nicolaus Tideman ${ }^{\text {b }}$

EXAMPLE (MADE SIMPLE)
 L $33,33,33$

ML 50, 25, 25

MR 50, 25, 25

R 50, 25, 25

OUTPUT - NOTE CONSENSUALITY MUST BITE HERE

saylget	L	ML	MR	R
L		33	33	33
ML	50		25	25
MR	50	25		25
R	50	25	25	
Gets	40	20	20	20

JUST AVERAGING WOULD GIVE

saylget	L	ML	MR	R
L		33	33	33
ML	50		25	25
MR	50	25		25
R	50	25	25	
Gets	$50 / 133$ $=37$ $28 / 133$ $=21$	$28 / 133$ $=21$	$28 / 133$ $=21$	

DVSN.APP --- INFO FOR SIGNUP WILL COME SOON WHEN GRADING NEARS

